
Resolution for General Clauses

We obtain the resolution inference rules for non-ground clauses from the inference rules
for ground clauses by replacing equality by unifiabilty:

General resolution Res :

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in the premises
are (bijectively) renamed such that they become different to any variable in the other
premises. We do not formalize this. Which names one uses for variables is otherwise
irrelevant.

Lifting Lemma

Lemma 3.30 Let C and D be variable-disjoint clauses. If

D




y

θ1

Dθ1

C




y

θ2

Cθ2

C ′
[ground resolution]

then there exists a substitution ρ such that

D C

C ′′





y

ρ

C ′ = C ′′ρ

[general resolution]

An analogous lifting lemma holds for factorization.

77

Saturation of Sets of General Clauses

Corollary 3.31 Let N be a set of general clauses saturated under Res , i. e., Res(N) ⊆
N . Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof. W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Other-
wise make them disjoint, and this renaming process changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)). Then either (i) there exist resolvable ground instances Dθ1 and
Cθ2 of N with resolvent C ′, or else (ii) C ′ is a factor of a ground instance Cθ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent C ′′ with
C ′′ρ = C ′, for a suitable substitution ρ. As C ′′ ∈ N by assumption, we obtain that
C ′ ∈ GΣ(N).

Case (ii): Similar. ✷

Soundness for General Clauses

Proposition 3.32 The general resolution calculus is sound.

Proof. We have to show that, if σ = mgu(A,B) then {∀~x (D ∨ B), ∀~y (C ∨ ¬A)} |=
∀~z (D ∨ C)σ and {∀~x (C ∨ A ∨ B)} |= ∀~z (C ∨ A)σ.

Let A be a model of ∀~x (D ∨B) and ∀~y (C ∨ ¬A). By Lemma 3.8, A is also a model of
∀~z (D ∨B)σ and ∀~z (C ∨ ¬A)σ and by Lemma 3.7, A is also a model of (D ∨B)σ and
(C ∨ ¬A)σ. Let β be an assignment. If A(β)(Bσ) = 0, then A(β)(Dσ) = 1. Otherwise
A(β)(Bσ) = A(β)(Aσ) = 1, hence A(β)(¬Aσ) = 0 and therefore A(β)(Cσ) = 1. In
both casesA(β)((D∨C)σ) = 1, soA |= (D ∨C)σ and by Lemma 3.7, A |= ∀~z (D ∨C)σ.

The proof for factorization inferences is similar. ✷

78

Herbrand’s Theorem

Lemma 3.33 Let N be a set of Σ-clauses, let A be an interpretation. Then A |= N
implies A |= GΣ(N).

Lemma 3.34 Let N be a set of Σ-clauses, let A be a Herbrand interpretation. Then
A |= GΣ(N) implies A |= N .

Proof. Let A be a Herbrand model of GΣ(N). We have to show that A |= ∀~x C for
all clauses ∀~x C in N . This is equivalent to A |= C, which in turn is equivalent to
A(β)(C) = 1 for all assignments β.

Choose β : X → UA arbitrarily. Since A is a Herbrand interpretation, β(x) is a ground
term for every variable x, so there is a substitution σ such that xσ = β(x) for all
variables x occurring in C. Now let γ be an arbitrary assignment, then for every variable
occurring in C we have (γ ◦ σ)(x) = A(γ)(xσ) = xσ = β(x) and consequently A(β)(C) =
A(γ ◦ σ)(C) = A(γ)(Cσ). Since Cσ ∈ GΣ(N) and A is a Herbrand model of GΣ(N),
we get A(γ)(Cσ) = 1, so A is a model of C. ✷

Theorem 3.35 (Herbrand) A set N of Σ-clauses is satisfiable if and only if it has a
Herbrand model over Σ.

Proof. The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥. Since resolution is sound,
this implies that ⊥ 6∈ Res

∗(N). Obviously, a ground instance of a clause has the same
number of literals as the clause itself, so we can conclude that ⊥ 6∈ GΣ(Res

∗(N)). Since
Res

∗(N) is saturated, GΣ(Res
∗(N)) is saturated as well by Cor. 3.31. Now IGΣ(Res∗(N))

is a Herbrand interpretation over Σ and by Thm. 3.20 it is a model of GΣ(Res
∗(N)).

By Lemma 3.34, every Herbrand model of GΣ(Res
∗(N)) is a model of Res∗(N). Now

N ⊆ Res
∗(N), so IGΣ(Res

∗(N)) |= N . ✷

Corollary 3.36 A set N of Σ-clauses is satisfiable if and only if its set of ground
instances GΣ(N) is satisfiable.

Proof. The “⇒” part follows directly from Lemma 3.33. For the “⇐” part assume that
GΣ(N) is satisfiable. By Thm. 3.35 GΣ(N) has a Herbrand model. By Lemma 3.34,
every Herbrand model of GΣ(N) is a model of N . ✷

79

Refutational Completeness of General Resolution

Theorem 3.37 Let N be a set of general clauses that is saturated w. r. t. Res . Then
N |= ⊥ if and only if ⊥ ∈ N .

Proof. The “⇐” part is trivial. For the “⇒” part assume that N is saturated, that
is, Res(N) ⊆ N . By Corollary 3.31, GΣ(N) is saturated as well, i. e., Res(GΣ(N)) ⊆
GΣ(N). By Cor. 3.36, N |= ⊥ implies GΣ(N) |= ⊥. By the refutational completeness of
ground resolution, GΣ(N) |= ⊥ implies ⊥ ∈ GΣ(N), so ⊥ ∈ N . ✷

3.12 Theoretical Consequences

We get some classical results on properties of first-order logic as easy corollaries.

The Theorem of Löwenheim-Skolem

Theorem 3.38 (Löwenheim–Skolem) Let Σ be a countable signature and let S be
a set of closed Σ-formulas. Then S is satisfiable iff S has a model over a countable
universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now
generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at
most countably many new Skolem functions to Σ′. As Σ′ is countable, so is TΣ′, the
universe of Herbrand-interpretations over Σ′. Now apply Theorem 3.35. ✷

There exist more refined versions of this theorem. For instance, one can show that, if S
has some infinite model, then S has a model with a universe of cardinality κ for every
κ that is larger than or equal to the cardinalty of the signature Σ.

Compactness of Predicate Logic

Theorem 3.39 (Compactness Theorem for First-Order Logic) Let S be a set of
closed first-order formulas. S is unsatisfiable⇔ some finite subset S ′ ⊆ S is unsatisfiable.

Proof. The “⇐” part is trivial. For the “⇒” part let S be unsatisfiable and let N be
the set of clauses obtained by Skolemization and CNF transformation of the formulas
in S. Clearly Res

∗(N) is unsatisfiable. By Theorem 3.37, ⊥ ∈ Res
∗(N), and therefore

⊥ ∈ Res
n(N) for some n ∈ N. Consequently, ⊥ has a finite resolution proof B of

depth ≤ n. Choose S ′ as the subset of formulas in S such that the corresponding clauses
contain the assumptions (leaves) of B. ✷

80

3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.20) one only needs to
resolve and factor maximal atoms
⇒ if the calculus is restricted to inferences involving maximal atoms, the proof
remains correct
⇒ ordering restrictions

2. In the proof, it does not really matter with which negative literal an inference is
performed
⇒ choose a negative literal don’t-care-nondeterministically
⇒ selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal atoms
⇒ If we impose ordering restrictions on ground inferences, the proof remains correct:

(Ground) Ordered Resolution:

D ∨A C ∨ ¬A

D ∨ C

if A ≻ L for all L in D and ¬A � L for all L in C.

(Ground) Ordered Factorization:

C ∨ A ∨A

C ∨A

if A � L for all L in C.

Problem: How to extend this to non-ground inferences?

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly)
maximal literals of ground instances.

81

An ordering ≻ on atoms (or terms) is called stable under substitutions, if A ≻ B implies
Aσ ≻ Bσ.

Note:

• We can not require that A ≻ B iff Aσ ≻ Bσ.

• We can not require that ≻ is total on non-ground atoms.

Consequence: In the ordering restrictions for non-ground inferences, we have to replace
≻ by 6� and � by 6≺.

Ordered Resolution:

D ∨B C ∨ ¬A

(D ∨ C)σ

if σ = mgu(A,B) and Bσ 6� Lσ for all L in D and ¬Aσ 6≺ Lσ for all L in C.

Ordered Factorization:

C ∨ A ∨B

(C ∨ A)σ

if σ = mgu(A,B) and Aσ 6≺ Lσ for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for individual clauses.

A selection function is a mapping

sel : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨A

Intuition:

• If a clause has at least one selected literal, compute only inferences that involve a
selected literal.

• If a clause has no selected literals, compute only inferences that involve a maximal
literal.

82

Resolution Calculus Res
≻
sel

The resolution calculus Res≻sel is parameterized by

• a selection function sel

• and a well-founded ordering ≻ on atoms that is total on ground atoms and stable
under substitutions.

(Ground) Ordered Resolution with Selection:

D ∨A C ∨ ¬A

D ∨ C

if the following conditions are satisfied:

(i) A ≻ L for all L in D;

(ii) nothing is selected in D ∨ A by sel;

(iii) ¬A is selected in C ∨ ¬A, or nothing is selected in C ∨ ¬A and ¬A � L for all L
in C.

(Ground) Ordered Factorization with Selection:

C ∨ A ∨A

C ∨A

if the following conditions are satisfied:

(i) A � L for all L in C;

(ii) nothing is selected in C ∨A ∨A by sel.

83

The extension from ground inferences to non-ground inferences is analogous to ordered
resolution (replace ≻ by 6� and � by 6≺). Again we assume that ≻ is stable under
substitutions.

Ordered Resolution with Selection:

D ∨B C ∨ ¬A

(D ∨ C)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Bσ 6� Lσ for all L in D;

(iii) nothing is selected in D ∨ B by sel;

(iv) ¬A is selected in C ∨ ¬A, or nothing is selected in C ∨ ¬A and ¬Aσ 6≺ Lσ for all
L in C.

Ordered Factorization with Selection:

C ∨ A ∨B

(C ∨ A)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Aσ 6≺ Lσ for all L in C.

(iii) nothing is selected in C ∨A ∨B by sel.

84

Lifting Lemma for Res≻sel

Lemma 3.40 Let C and D be variable-disjoint clauses. If

D




y

θ1

Dθ1

C




y

θ2

Cθ2

C ′
[ground inference in Res

≻
sel]

and if sel(Dθ1) ≃ sel(D), sel(Cθ2) ≃ sel(C) (that is, “corresponding” literals are se-
lected), then there exists a substitution ρ such that

D C

C ′′





y

ρ

C ′ = C ′′ρ

[inference in Res
≻
sel]

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.41 LetN be a set of general clauses saturated under Res≻sel, i. e., Res
≻
sel(N) ⊆

N . Then there exists a selection function sel′ such that sel|N = sel′|N and GΣ(N) is also
saturated, i. e.,

Res
≻
sel′(GΣ(N)) ⊆ GΣ(N).

Proof. We first define the selection function sel′ such that sel′(C) = sel(C) for all
clauses C ∈ GΣ(N) ∩ N . For C ∈ GΣ(N) \ N we choose a fixed but arbitrary clause
D ∈ N with C ∈ GΣ(D) and define sel′(C) to be those occurrences of literals that are
ground instances of the occurrences selected by sel in D. Then proceed as in the proof
of Cor. 3.31 using the lifting lemma above. ✷

85

Soundness and Refutational Completeness

Theorem 3.42 Let ≻ be an atom ordering and sel a selection function such that
Res

≻
sel(N) ⊆ N . Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof. The “⇐” part is trivial. For the “⇒” part consider first the propositional
level: Construct a candidate interpretation IN as for unrestricted resolution, except
that clauses C in N that have selected literals are not productive, even if they are false
in IC and if their maximal atom occurs only once and is positive. The result for general
clauses follows using Corollary 3.41. ✷

What Do We Gain?

Search spaces become smaller:

1 P ∨Q

2 P ∨ ¬Q

3 ¬P ∨Q

4 ¬P ∨ ¬Q

5 Q ∨Q Res 1, 3
6 Q Fact 5
7 ¬P Res 6, 4
8 P Res 6, 2
9 ⊥ Res 8, 7

we assume P ≻ Q
and sel as indicated by
X . The maximal lit-
eral in a clause is de-
picted in red.

In this example, the ordering and selection function even ensure that the refutation
proceeds strictly deterministically.

Rotation redundancy can be avoided:

From

C1 ∨ A C2 ∨ ¬A ∨ B
C1 ∨ C2 ∨B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨ A
C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations are possible. However,
if A ≻ B, then the second proof does not fulfill the ordering restrictions.

86

Craig-Interpolation

Theorem 3.43 (Craig 1957) Let F and G be two propositional formulas such that
F |= G. Then there exists a formula H (called the interpolant for F |= G), such that
H contains only propositional variables occurring both in F and in G, and such that
F |= H and H |= G.

Proof. Let ΠF , ΠG, and ΠFG be the sets of propositional variables that occur only
in F , only in G, or both in F and G. Translate F and ¬G into CNF; let N and M ,
respectively, denote the resulting clause set. Choose an atom ordering ≻ for which the
propositional variables in ΠF are larger than those in ΠFG ∪ ΠG. Saturate N into N ′

w. r. t. Res≻sel with an empty selection function sel. Then saturate N ′ ∪M w. r. t. Res≻sel
to derive ⊥. As N ′ is already saturated, due to the ordering restrictions only inferences
need to be considered where premises, if they are from N ′, only contain symbols from
ΠFG. The conjunction of these premises is an interpolant H . ✷

The theorem also holds for first-order formulas, but in the general case, a proof based
on resolution technology is complicated because of Skolemization.

3.14 Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (e. g., if they are tautologies)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is
called redundant w. r. t. N , if there exist C1, . . . , Cn ∈ N , n ≥ 0, such that Ci ≺ C and
C1, . . . , Cn |= C.

Redundancy for general clauses: C is called redundant w. r. t. N , if all ground instances
Cσ of C are redundant w. r. t. GΣ(N).

Intuition: If a ground clause C is redundant and all clauses smaller than C hold in IC ,
then C holds in IC (so C is neither a minimal counterexample nor productive).

Note: The same ordering ≻ is used for ordering restrictions and for redundancy (and
for the completeness proof).

87

Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations are sufficient for us,
however.

Proposition 3.44 Some redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N .

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.

(Under certain conditions one may also use non-strict subsumption, but this requires a
slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Res≻sel) if

Res
≻
sel(N \Red(N)) ⊆ N ∪ Red(N)

Theorem 3.45 Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof (Sketch).
(i) Ground case: Consider the construction of the candidate interpretation I≻N for Res≻sel.

If a clause C ∈ N is redundant, then there exist C1, . . . , Cn ∈ N , n ≥ 0, such that
Ci ≺ C and C1, . . . , Cn |= C.

If IC |= Ci by minimality, then IC |= C.

In particular, C is not productive.

⇒ Redundant clauses are not used as premises for “essential” inferences.

By saturation, the conclusion D′ ∨ C ′ of a resolution inference is contained in N
(as before) or in Red(N). In the first case, minimality of C ensures that D′ ∨ C ′ is
productive or ID′∨C′ |= D′ ∨ C ′; in the second case, it ensures that ID′∨C′ |= D′ ∨ C ′.
So in both cases we get a contradiction (analogously for factorization). The rest of
the proof works as before.

(ii) Lifting: no additional problems over the proof of Theorem 3.42. ✷

88

Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation, we have to ensure that
redundant clauses remain redundant in the rest of the derivation.

Theorem 3.46

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof. (i) Obvious.

(ii) For ground clause sets N , the well-foundedness of the multiset extension of the clause
ordering implies that every clause in Red(N) is entailed by smaller clauses in N that are
themselves not in Red(N).

For general clause sets N , the result follows from the fact that every clause in GΣ(N) \
Red(GΣ(N)) is an instance of a clause in N \ Red(N). ✷

Recall that Red(N) may include clauses that are not in N .

Computing Saturated Sets

Redundancy is preserved when, during a theorem proving derivation one adds new
clauses or deletes redundant clauses. This motivates the following definitions:

A run of the resolution calculus is a sequence N0 ⊢ N1 ⊢ N2 ⊢ . . . , such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w. r. t. the remaining ones.

For a run, we define N∞ =
⋃

i≥0Ni and N∗ =
⋃

i≥0

⋂

j≥iNj .The set N∗ of all persistent
clauses is called the limit of the run.

Lemma 3.47 Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run. Then Red(Ni) ⊆ Red(N∞) and
Red(Ni) ⊆ Red(N∗) for every i.

Proof. Exercise. ✷

Corollary 3.48 Ni ⊆ N∗ ∪ Red(N∗) for every i.

Proof. If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w. r. t. Nk+1. Consequently, C is redundant w. r. t. N∗. ✷

89

Even if a set N is inconsistent, it could happen that ⊥ is never derived, because some
required inference is never computed.

The following definition rules out such runs:

A run is called fair, if the conclusion of every inference from clauses in N∗ \ Red(N∗) is
contained in some Ni ∪ Red(Ni).

Lemma 3.49 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N∗ is contained in some Ni ∪ Red(Ni), and therefore contained in N∗ ∪
Red(N∗). Hence N∗ is saturated up to redundancy. ✷

Theorem 3.50 (Refutational Completeness: Dynamic View) LetN0 ⊢ N1 ⊢ N2 ⊢
. . . be a fair run, let N∗ be its limit. Then N0 has a model if and only if ⊥ /∈ N∗.

Proof. (⇐): By fairness, N∗ is saturated up to redundancy. If ⊥ /∈ N∗, then it has a
Herbrand model. Since every clause in N0 is contained in N∗ or redundant w. r. t. N∗,
this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. ✷

Simplifications

In theory, the definition of a run permits to add arbitrary clauses that are entailed by
the current ones.

In practice, we restrict to two cases:

• We add conclusions of Res≻sel-inferences from non-redundant premises.
❀ necessary to guarantee fairness

• We add clauses that are entailed by the current ones if this makes other clauses
redundant:

N ∪ {C} ⊢ N ∪ {C,D} ⊢ N ∪ {D}

if N ∪ {C} |= D and C ∈ Red(N ∪ {D}).

Net effect: C is simplified to D
❀ useful to get easier/smaller clause sets

90

Examples of simplification techniques:

• Deletion of duplicated literals:

N ∪ {C ∨ L ∨ L} ⊢ N ∪ {C ∨ L}

• Subsumption resolution:

N ∪ {D ∨ L, C ∨Dσ ∨ Lσ} ⊢ N ∪ {D ∨ L, C ∨Dσ}

3.15 Hyperresolution

There are many variants of resolution.

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C. If we perform an
inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion.
Then we must eliminate the remaining selected literals one by one by further resolution
steps.

Hyperresolution replaces these successive steps by a single inference. As for Res≻sel, the
calculus is parameterized by an atom ordering ≻ and a selection function sel.

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨Dn ∨ C)σ

with σ = mgu(A1
.
= B1, . . . , An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di;

(iii) the indicated occurrences of the ¬Ai are exactly the ones selected by sel, or nothing
is selected in the right premise and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented by a factorization in-
ference.

As we have seen, hyperresolution can be simulated by iterated binary resolution.

However this yields intermediate clauses which HR might not derive, and many of them
might not be extendable into a full HR inference.

91

3.16 Implementing Resolution: The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together with the “given
clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of clauses.

The set of clauses is split into two subsets:

• WO = “Worked-off” (or “active”) clauses: Have already been selected as “given
clause”.

• U = “Usable” (or “passive”) clauses: Have not yet been selected as “given clause”.

During each iteration of the main loop:

Select a new given clause C from U ;
U := U \ {C}.

Find partner clauses Di from WO ;
New := Conclusions of inferences from {Di | i ∈ I } ∪ C where one premise is C;
U := U ∪ New ;
WO := WO ∪ {C}

⇒ At any time, all inferences between clauses in WO have been computed.

⇒ The procedure is fair, if no clause remains in U forever.

Additionally:

Try to simplify C using WO . (Skip the remainder of the iteration, if C can be
eliminated.)

Try to simplify (or even eliminate) clauses from WO using C.

Design decision: should one also simplify U using C ?

yes ❀ “Otter loop”:
Advantage: simplifications of U may be useful to derive the empty clause.

no ❀ “Discount loop”:
Advantage: clauses in U are really passive; only clauses in WO have to be kept in
index data structure. (Hence: can use index data structure for which retrieval is
faster, even if update is slower and space consumption is higher.)

92

