
2.9 OBDDs

Goal:

Efficient manipulation of (equivalence classes of) propositional formulas.

Method: Minimized graph representation of decision trees, based on a fixed ordering
on propositional variables.

⇒ Canonical representation of formulas.

⇒ Satisfiability checking as a side effect.

BDDs

BDD (Binary decision diagram):

Labelled DAG (directed acyclic graph).

Leaf nodes:

labelled with a truth value (0 or 1).

Non-leaf nodes (interior nodes):

labelled with a propositional variable,
exactly two outgoing edges, labelled with 0 ( ) and 1 ( )

P

Q

1 0

1

0

1
0

⇔

P

Q

1 0

Every BDD node can be interpreted as a mapping from valuations to truth values:
Traverse the BDD from the given node to a leaf node; for any node labelled with P take
the 0-edge or 1-edge depending on whether A(P ) is 0 or 1.

⇒ Compact representation of truth tables.
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OBDDs

OBDD (Ordered BDD):

Let < be a total ordering of the propositional variables.

An OBDD w. r. t. < is a BDD where every edge from a non-leaf node leads either to
a leaf node or to a non-leaf node with a strictly larger label w. r. t. <.

OBDDs and formulas:

A leaf node 0 represents ⊥ (or any unsatisfiable formula).

A leaf node 1 represents ⊤ (or any valid formula).

If a non-leaf node v has the label P , and its 0-edge leads to a node representing
the formula F0, and its 1-edge leads to a node representing the formula F1, then v
represents the formula

F |=| if P then F1 else F0

|=| (P ∧ F1) ∨ (¬P ∧ F0)
|=| (P → F1) ∧ (¬P → F0)

Conversely:

Define F{P 7→ H} as the formula obtained from F by replacing every occurrence of
P in F by H .

For every formula F and propositional variable P :

F |=| (P ∧ F{P 7→ ⊤}) ∨ (¬P ∧ F{P 7→ ⊥})

(Shannon expansion of F , originally due to Boole).

Consequence: Every formula F can be represented by an OBDD.
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Reduced OBDDs

An OBDD is called reduced, if it has

• no duplicated leaf nodes 0 0

• no duplicated interior nodes P P

• no redundant tests P

Theorem 2.20 (Bryant 1986) Every OBDD can be converted into an equivalent re-
duced OBDD.

Assumptions from now on:

One fixed ordering >.

We consider only reduced OBDDs.

All OBDDs are sub-OBDDs of a single OBDD.

Implementation:

Bottom-up construction of reduced OBDDs is possible using a hash table.

Keys and values are triples (PropVar ,Ptr 0,Ptr 1),

where Ptr 0 and Ptr 1 are pointers to the 0-successor and 1-successor hash table entry.

39



Theorem 2.21 (Bryant 1986) If v and v′ are two different nodes in a reduced OBDD,
then they represent non-equivalent formulas.

Proof. We use induction over the maximum of the numbers of nodes reachable from v
and v′, respectively. Let F and F ′ be the formulas represented by v and v′.

Case 1: v and v′ are non-leaf nodes labelled by different propositional variables P and
P ′. Without loss of generality, P < P ′.

Let v0 and v1 be the 0-successor and the 1-successor of v, and let F0 and F1 be formulas
represented by v0 and v1. We may assume without loss of generality that all propositional
variables occurring in F ′, F0, and F1 are larger than P . By reducedness, v0 6= v1, so
by induction, F0 6|=| F1. Hence there must be a valuation A such that A(F0) 6= A(F1).
Define valuations A0 and A1 by

A0(P ) = 0 A1(P ) = 1
A0(Q) = A(Q) A1(Q) = A(Q) for all Q 6= P

We know that the node v represents F |=| (P ∧ F1) ∨ (¬P ∧ F0), so A0(F ) = A0(F0) =
A(F0) and A1(F ) = A1(F1) = A(F1), and thereforeA0(F ) 6= A1(F ). On the other hand,
P does not occur in F ′, therefore A0(F

′) = A1(F
′). So we must have A0(F ) 6= A0(F

′)
or A1(F ) 6= A1(F

′), which implies F 6|=| F ′.

Case 2: v and v′ are non-leaf nodes labelled by the same propositional variable.
Case 3: v is a non-leaf node, v′ is a non-leaf node, or vice versa.
Case 4: v and v′ are different leaf nodes.

Analogously. ✷

Corollary 2.22 F is valid, if and only if it is represented by 1 . F is unsatisfiable, if

and only if it is represented by 0 .
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Operations on OBDDs

Example:

Let ◦ be a binary connective.

Let P be the smallest propositional variable that occurs in F or G or both.

F ◦G |=| (P ∧ (F ◦G){P 7→ ⊤}) ∨ (¬P ∧ (F ◦G){P 7→ ⊥})

|=| (P ∧ (F{P 7→ ⊤} ◦G{P 7→ ⊤})
∨ (¬P ∧ (F{P 7→ ⊥} ◦G{P 7→ ⊥})))

Note: F{P 7→ ⊤} is either represented by the same node as F (if P does not occur
in F ), or by its 1-successor (otherwise).

⇒ Obvious recursive function on OBDD nodes
(needs memoizing for efficient implementation).

OBDD operations are not restricted to the connectives of propositional logic.

We can also compute operations of quantified boolean formulas

∀P. F |=| (F{P 7→ ⊤}) ∧ (F{P 7→ ⊥})

∃P. F |=| (F{P 7→ ⊤}) ∨ (F{P 7→ ⊥})

and images or preimages of propositional formulas w. r. t. boolean relations (needed for
typical verification tasks).

The size of the OBDD for F ◦ G is bounded by mn, where F has size m and G has
size n. (Size = number of nodes)

With memoization, the time for computing F ◦G is also at most O(mn).

The size of an OBDD for a given formula depends crucially on the chosen ordering of
the propositional variables:

Let F = (P1 ∧ P2) ∨ (P3 ∧ P4) ∨ · · · ∨ (P2n−1 ∧ P2n).

P1 < P2 < P3 < P4 < · · · < P2n−1 < P2n: 2n+ 2 nodes.

P1 < P3 < · · · < P2n−1 < P2 < P4 < · · · < P2n: 2n+1 nodes.

Even worse: There are (practically relevant!) formulas for which the OBDD has expo-
nential size for every ordering of the propositional variables.

Example: middle bit of binary multiplication.
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2.10 FRAIGs

Goal:

Efficient manipulation of (equivalence classes of) propositional formulas.

Smaller representation than OBDDs.

Method: Minimized graph representation of boolean circuits.

FRAIG (Functionally Reduced And-Inverter Graph):

Labelled DAG (directed acyclic graph).

Leaf nodes:

labelled with propositional variables.

Non-leaf nodes (interior nodes):

labelled with ∧ (two outgoing edges) or ¬ (one outgoing edge).

Reducedness (i. e., no two different nodes represent equivalent formulas) must be estab-
lished explicitly, using

structural hashing,
simulation vectors,
CDCL,
OBDDs.

⇒ Semi-canonical representation of formulas.

Literature

A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton: FRAIGs: A unifying
representation for logic synthesis and verification; ERL Technical Report, EECS Dept.,
UC Berkeley, March 2005.

2.11 Other Calculi

Ordered resolution
Tableau calculus
Hilbert calculus
Sequent calculus
Natural deduction

see next chapter
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3 First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive (e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

• non-logical symbols (domain-specific)
⇒ terms, atomic formulas

• logical connectives (domain-independent)
⇒ Boolean combinations, quantifiers

Signatures

A signature Σ = (Ω,Π) fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0, written arity(P ) = m.

Function symbols are also called operator symbols.
If n = 0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use

b, c, d for constant symbols,

f , g, h for non-constant function symbols,

P , Q, R, S for predicate symbols.
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Convention: We will usually write f/n ∈ Ω instead of f ∈ Ω, arity(f) = n (analogously
for predicate symbols).

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote
variables.

Terms

Terms over Σ and X (Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)
| f(s1, ..., sn) , f/n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any variable
is called a ground term. By TΣ we denote the set of Σ-ground terms.

In other words, terms are formal expressions with well-balanced parentheses which we
may also view as marked, ordered trees. The markings are function symbols or variables.
The nodes correspond to the subterms of the term. A node v that is marked with
a function symbol f of arity n has exactly n subtrees representing the n immediate
subterms of v.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A,B ::= P (s1, . . . , sm) , P/m ∈ Π (non-equational atom)
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of first-order
logic with equality . Admitting equality does not really increase the expressiveness of
first-order logic (see next chapter). But deductive systems where equality is treated
specifically are much more efficient.
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Literals

L ::= A (positive literal)
| ¬A (negative literal)

Clauses

C,D ::= ⊥ (empty clause)
| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F,G,H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

∀x1, . . . , xn F and ∃x1, . . . , xn F abbreviate ∀x1 . . .∀xn F and ∃x1 . . .∃xn F .

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+ t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t+ v for ≤ (∗(s, u),+(t, v))
−s for −(s)
s! for !(s)
|s| for | |(s)
0 for 0()
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Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)
ΩPA = {0/0, +/2, ∗/2, s/1}
ΠPA = {</2}

Examples of formulas over this signature are:

∀x, y ((x < y ∨ x ≈ y) ↔ ∃z (x+ z ≈ y))
∃x∀y (x+ y ≈ y)
∀x, y (x ∗ s(y) ≈ x ∗ y + x)
∀x, y (s(x) ≈ s(y) → x ≈ y)
∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F ):

pos(x) = {ε},
pos(f(s1, . . . , sn)) = {ε} ∪

⋃n
i=1{ ip | p ∈ pos(si) },

pos(P (t1, . . . , tn)) = {ε} ∪
⋃n

i=1{ ip | p ∈ pos(ti) },

pos(∀xF ) = {ε} ∪ { 1p | p ∈ pos(F ) },
pos(∃xF ) = {ε} ∪ { 1p | p ∈ pos(F ) }.

The prefix order ≤, the subformula (subterm) operator, the formula (term) replacement
operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Variables

The set of variables occurring in a term t is denoted by var(t) (and analogously for
atoms, literals, clauses, and formulas).
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Bound and Free Variables

In QxF, Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx. An occurrence of
a variable x is called bound, if it is inside the scope of a quantifier Qx. Any other
occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

Example:

∀y

scope of y
︷ ︸︸ ︷

((∀x

scope of x
︷ ︸︸ ︷

P (x) ) → R(x, y))

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of
x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.

Substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = { x ∈ X | σ(x) 6= x },

is finite. The set of variables introduced by σ, that is, the set of variables occurring in
one of the terms σ(x), with x ∈ dom(σ), is denoted by codom(σ).

Substitutions are often written as {x1 7→ s1, . . . , xn 7→ sn}, with xi pairwise distinct,
and then denote the mapping

{x1 7→ s1, . . . , xn 7→ sn}(y) =

{

si, if y = xi

y, otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

{

t, if y = x

σ(y), otherwise

48



Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural
induction over the syntactic structure of t or F by the equations depicted on the next
page.

In the presence of quantification it is surprisingly complex: We need to make sure that
the (free) variables in the codomain of σ are not captured upon placing them into the
scope of a quantifier Qy, hence the bound variable must be renamed into a “fresh”, that
is, previously unused, variable z.

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f(s1, . . . , sn)σ = f(s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

P (s1, . . . , sn)σ = P (s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(F ◦G)σ = (Fσ ◦ Gσ) for each binary connective ◦

(QxF )σ = Qz (F σ[x 7→ z]) with z a fresh variable

If s = tσ for some subsitution σ, we call the term s an instance of the term t, and we
call t a generalization of s (analogously for formulas).
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3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

Algebras

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un
A → UA)f/n∈Ω, (PA ⊆ Um

A )P/m∈Π)

where UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Σ-algebras generalize the valuations from propositional logic.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined
externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Σ-algebra A), is a map β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → UA

as follows:

A(β)(x) = β(x), x ∈ X
A(β)(f(s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f/n ∈ Ω

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let β[x 7→ a] : X → UA, for x ∈ X and a ∈ UA, denote the
assignment

β[x 7→ a](y) =

{

a if x = y

β(y) otherwise
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Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P (s1, . . . , sn)) = if (A(β)(s1), . . . ,A(β)(sn)) ∈ PA then 1 else 0

A(β)(s ≈ t) = if A(β)(s) = A(β)(t) then 1 else 0

A(β)(¬F ) = 1−A(β)(F )

A(β)(F ∧G) = min(A(β)(F ),A(β)(G))

A(β)(F ∨G) = max(A(β)(F ),A(β)(G))

A(β)(F → G) = max(1−A(β)(F ),A(β)(G))

A(β)(F ↔ G) = if A(β)(F ) = A(β)(G) then 1 else 0

A(β)(∀xF ) = min
a∈UA

{A(β[x 7→ a])(F )}

A(β)(∃xF ) = max
a∈UA

{A(β[x 7→ a])(F )}

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n+ 1

+N : (n,m) 7→ n+m

∗N : (n,m) 7→ n ∗m

<N = { (n,m) | n less than m }

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for sample terms and formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x+ y ≈ s(y)) = 1
N(β)(∀x, y (x+ y ≈ y + x)) = 1
N(β)(∀z (z < y)) = 0
N(β)(∀x∃y (x < y)) = 1
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Ground Terms and Closed Formulas

If t is a ground term, then A(β)(t) does not depend on β:

A(β)(t) = A(β ′)(t)

for every β and β ′.

Analogously, if F is a closed formula, then A(β)(F ) does not depend on β:

A(β)(F ) = A(β ′)(F )

for every β and β ′.

An element a ∈ UA is called term-generated, if a = A(β)(t) for some ground term t.

In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

F is true in A under assignment β:

A, β |= F :⇔ A(β)(F ) = 1

F is true in A (A is a model of F ; F is valid in A):

A |= F :⇔ A, β |= F for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A, β |= F . Otherwise F is called
unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written F |= G, if for all A ∈ Σ-Alg
and β ∈ X → UA, whenever A, β |= F , then A, β |= G.

F and G are called equivalent, written F |=| G, if for all A ∈ Σ-Alg and β ∈ X → UA

we have A, β |= F ⇔ A, β |= G.

Proposition 3.1 F entails G iff (F → G) is valid

Proposition 3.2 F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e. g., N |= F

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA: if A, β |= G, for all G ∈ N , then A, β |= F .
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.3 Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras
A, assignments β, and substitutions σ.

Lemma 3.4 For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → UA is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 3.5 For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F ).

Corollary 3.6 A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

Two Lemmas

Lemma 3.7 LetA be a Σ-algebra and let F be a Σ-formula with free variables x1, . . . , xn.
Then

A |= ∀x1, . . . , xn F if and only if A |= F

Lemma 3.8 Let F be a Σ-formula with free variables x1, . . . , xn, let σ be a substitution,
and let y1, . . . , ym be the free variables of Fσ. Then

A |= ∀x1, . . . , xn F implies A |= ∀y1, . . . , ym Fσ
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3.4 Algorithmic Problems

Validity(F ): |= F ?

Satisfiability(F ): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F ): A |= F ?

Solve(A,F ): find an assignment β such that A, β |= F .

Solve(F ): find a substitution σ such that |= Fσ.

Abduce(F ): find G with “certain properties” such that G |= F .

Theory of an Algebra

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G }

Problem of axiomatizability:

For which algebras A can one axiomatize Th(A), that is, can one write down a formula
F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G }?

(analogously for classes of algebras).

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, {<}) and N+ = (N, 0, s,+, <) its standard interpretation
on the natural numbers. Th(N+) is called Presburger arithmetic (M. Presburger, 1929).
(There is no essential difference when one, instead of N, considers the integer numbers
Z as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
c ≥ 0 such that Th(Z+) 6∈ NTIME(22

cn

)).

However, N∗ = (N, 0, s,+, ∗, <), the standard interpretation of ΣPA = ({0/0, s/1,+/2,
∗/2}, {<}), has as theory the so-called Peano arithmetic which is undecidable and not
even recursively enumerable.
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(Non-)Computability Results

1. For most signatures Σ, validity is undecidable for Σ-formulas.
(One can easily encode Turing machines in most signatures.)

2. Gödel’s completeness theorem:
For each signature Σ, the set of valid Σ-formulas is recursively enumerable.
(We will prove this by giving complete deduction systems.)

3. Gödel’s incompleteness theorem:
For Σ = ΣPA and N∗ = (N, 0, s,+, ∗, <), the theory Th(N∗) is not recursively
enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

• Variable-free formulas without equality: satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

• Finite model checking is decidable in exponential time and PSPACE-complete.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.
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Prenex Normal Form (Traditional)

Prenex formulas have the form

Q1x1 . . .Qnxn F,

where F is quantifier-free and Qi ∈ {∀, ∃}; we call Q1x1 . . .Qnxn the quantifier prefix
and F the matrix of the formula.

Computing prenex normal form by the reduction system ⇒P :

H [(F ↔ G)]p ⇒P H [(F → G) ∧ (G → F )]p
H [¬QxF ]p ⇒P H [Qx¬F ]p

H [((QxF ) ◦ G)]p ⇒P H [Qy (F{x 7→ y} ◦ G)]p,
◦ ∈ {∧,∨}

H [((QxF ) → G)]p ⇒P H [Qy (F{x 7→ y} → G)]p,
H [(F ◦ (QxG))]p ⇒P H [Qy (F ◦ G{x 7→ y})]p,

◦ ∈ {∧,∨,→}

Here y is always assumed to be some fresh variable and Q denotes the quantifier dual
to Q, i. e., ∀ = ∃ and ∃ = ∀.

Skolemization

Intuition: replacement of ∃y by a concrete choice function computing y from all the
arguments y depends on.

Transformation ⇒S

(to be applied outermost, not in subformulas):

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F{y 7→ f(x1, . . . , xn)}

where f/n is a new function symbol (Skolem function).

Together: F ⇒∗
P G

︸︷︷︸

prenex
⇒∗

S H
︸︷︷︸

prenex, no ∃

Theorem 3.9 Let F , G, and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (w. r. t. Σ-Alg) ⇔ H satisfiable (w. r. t. Σ′-Alg) where Σ′ = (Ω ∪
SKF ,Π) if Σ = (Ω,Π).
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The Complete Picture

F ⇒∗
P Q1y1 . . .QnynG (G quantifier-free)

⇒∗
S ∀x1, . . . , xmH (m ≤ n, H quantifier-free)

⇒∗
CNF ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F .
Note: The variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F be closed. Then F ′ |= F . (The converse is not true in general.)

Theorem 3.11 Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff N is
satisfiable

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note
that we only can preserve satisfiability anyway due to Skolemization.

• the size of the CNF is exponential when done naively; the transformations we
introduced already for propositional logic avoid this exponential growth;

• we want to preserve the original formula structure;

• we want small arity of Skolem functions (see next section).
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3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving can be obtained using
the following steps:

• eliminate trivial subformulas

• replace beneficial subformulas

• produce a negation normal form (NNF)

• apply miniscoping

• rename all variables

• Skolemize

• push quantifiers upward

• apply distributivity

We start with a closed formula.

Elimination of Trivial Subformulas

Eliminate subformulas ⊤ and ⊥ essentially as in the propositional case modulo associa-
tivity/commutativity of ∧, ∨:

H [(F ∧ ⊤)]p ⇒OCNF H [F ]p

H [(F ∨ ⊥)]p ⇒OCNF H [F ]p

H [(F ↔ ⊥)]p ⇒OCNF H [¬F ]p

H [(F ↔ ⊤)]p ⇒OCNF H [F ]p

H [(F ∨ ⊤)]p ⇒OCNF H [⊤]p

H [(F ∧ ⊥)]p ⇒OCNF H [⊥]p

H [¬⊤]p ⇒OCNF H [⊥]p

H [¬⊥]p ⇒OCNF H [⊤]p

H [(F → ⊥)]p ⇒OCNF H [¬F ]p

H [(F → ⊤)]p ⇒OCNF H [⊤]p

H [(⊥ → F )]p ⇒OCNF H [⊤]p

H [(⊤ → F )]p ⇒OCNF H [F ]p

H [Qx⊤]p ⇒OCNF H [⊤]p

H [Qx⊥]p ⇒OCNF H [⊥]p
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Replacement of Beneficial Subformulas

The functions ν and ν̄ that give us an overapproximation for the number of clauses
generated by a formula are extended to quantified formulas by

ν(∀xF ) = ν(∃xF ) = ν(F ),
ν̄(∀xF ) = ν̄(∃xF ) = ν̄(F ).

The other cases are defined as for propositional formulas.

Introduce top-down fresh predicates for beneficial subformulas:

H [F ]p ⇒OCNF H [P (x1, . . . , xn)]p ∧ def(H, p, P, F )

if ν(H [F ]p) > ν(H [P (. . . )]p ∧ def(H, p, P, F )),

where {x1, . . . , xn} are the free variables in F , P/n is a predicate new to H [F ]p, and
def(H, p, P, F ) is defined by

∀x1, . . . , xn (P (x1, . . . , xn) → F ), if pol(H, p) = 1,
∀x1, . . . , xn (F → P (x1, . . . , xn)), if pol(H, p) = −1,
∀x1, . . . , xn (P (x1, . . . , xn) ↔ F ), if pol(H, p) = 0.

As in the propositional case, one can test ν(H [F ]p) > ν(H [P ]p ∧ def(H, p, P, F )) in
constant time without actually computing ν.

Negation Normal Form (NNF)

Apply the reduction system ⇒NNF:

H [F ↔ G]p ⇒NNF H [(F → G) ∧ (G → F )]p

if pol(H, p) = 1 or pol(H, p) = 0.

H [F ↔ G]p ⇒NNF H [(F ∧G) ∨ (¬G ∧ ¬F )]p

if pol(H, p) = −1.

H [F → G]p ⇒NNF H [¬F ∨G]p

H [¬¬F ]p ⇒NNF H [F ]p

H [¬(F ∨G)]p ⇒NNF H [¬F ∧ ¬G]p

H [¬(F ∧G)]p ⇒NNF H [¬F ∨ ¬G]p

H [¬Qx F ]p ⇒NNF H [Qx ¬F ]p
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Miniscoping

Apply the reduction system ⇒MS modulo associativity and commutativity of ∧, ∨. For
the rules below we assume that x occurs freely in F , F ′, but x does not occur freely
in G:

H [Qx (F ∧G)]p ⇒MS H [(QxF ) ∧G]p

H [Qx (F ∨G)]p ⇒MS H [(QxF ) ∨G]p

H [∀x (F ∧ F ′)]p ⇒MS H [(∀xF ) ∧ (∀xF ′)]p

H [∃x (F ∨ F ′)]p ⇒MS H [(∃xF ) ∨ (∃xF ′)]p

H [QxG]p ⇒MS H [G]p

Variable Renaming

Rename all variables in H such that there are no two different positions p, q with H|p =
QxF and H|q = Q′xG.

Standard Skolemization

Apply the reduction system:

H [∃xF ]p ⇒SK H [F{x 7→ f(y1, . . . , yn)}]p

where p has minimal length,
{y1, . . . , yn} are the free variables in ∃xF ,
and f/n is a new function symbol to H .

Final Steps

Apply the reduction system modulo commutativity of ∧, ∨ to push ∀ upward:

H [(∀xF ) ∧G]p ⇒OCNF H [∀x (F ∧G)]p

H [(∀xF ) ∨G]p ⇒OCNF H [∀x (F ∨G)]p

Note that variable renaming ensures that x does not occur in G.

Apply the reduction system modulo commutativity of ∧, ∨ to push disjunctions down-
ward:

H [(F ∧ F ′) ∨G]p ⇒CNF H [(F ∨G) ∧ (F ′ ∨G)]p
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