
Notational Conventions

As a notational convention we assume that ¬ binds strongest, and we remove outermost
parentheses, so ¬P ∨Q is actually a shorthand for ((¬P) ∨Q).

Instead of ((P ∧Q) ∧ R) we simply write P ∧Q ∧R (and analogously for ∨).

For all other logical connectives we will use parentheses when needed.

Formula Manipulation

Automated reasoning is very much formula manipulation. In order to precisely represent
the manipulation of a formula, we introduce positions.

A position is a word over N. The set of positions of a formula F is inductively defined
by

pos(F) := {ε} if F ∈ {⊤,⊥} or F ∈ Π
pos(¬F) := {ε} ∪ { 1p | p ∈ pos(F) }

pos(F ◦G) := {ε} ∪ { 1p | p ∈ pos(F) } ∪ { 2p | p ∈ pos(G) }
where ◦ ∈ {∧,∨,→,↔}.

The prefix order ≤ on positions is defined by p ≤ q if there is some p′ such that pp′ = q.

Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable,
they are “parallel”, see below.

By < we denote the strict part of ≤, that is, p < q if p ≤ q but not q ≤ p.

By ‖ we denote incomparable positions, that is, p ‖ q if neither p ≤ q nor q ≤ p.

We say that p is above q if p ≤ q, p is strictly above q if p < q, and p and q are parallel
if p ‖ q.

The size of a formula F is given by the cardinality of pos(F): |F | := |pos(F)|.

The subformula of F at position p ∈ pos(F) is recursively defined by

F |ε := F

(¬F)|1p := F |p
(F1 ◦ F2)|ip := Fi|p where i ∈ {1, 2}

and ◦ ∈ {∧,∨,→,↔}.

13

Finally, the replacement of a subformula at position p ∈ pos(F) by a formula G is
recursively defined by

F [G]ε := G

(¬F)[G]1p := ¬(F [G]p)
(F1 ◦ F2)[G]1p := (F1[G]p ◦ F2)
(F1 ◦ F2)[G]2p := (F1 ◦ F2[G]p)

where ◦ ∈ {∧,∨,→,↔}.

Example 2.1 The set of positions for the formula F = (P → Q) → (P ∧ ¬Q) is
pos(F) = {ε, 1, 11, 12, 2, 21, 22, 221}.

The subformula at position 22 is F |22 = ¬Q and replacing this formula by P ↔ Q

results in F [P ↔ Q]22 = (P → Q) → (P ∧ (P ↔ Q)).

Polarities

A further prerequisite for efficient formula manipulation is the polarity of a subformula
G of F . The polarity determines the number of “negations” starting from F down to
G. It is 1 for an even number, −1 for an odd number and 0 if there is at least one
equivalence connective along the path.

The polarity of a subformula G = F |p at position p is pol(F, p), where pol is recursively
defined by

pol(F, ε) := 1
pol(¬F, 1p) := −pol(F, p)

pol(F1 ◦ F2, ip) := pol(Fi, p) if ◦ ∈ {∧,∨}
pol(F1 → F2, 1p) := −pol(F1, p)
pol(F1 → F2, 2p) := pol(F2, p)
pol(F1 ↔ F2, ip) := 0

Example 2.2 Let F = (P → Q) → (P ∧ ¬Q). Then pol(F, 1) = pol(F, 12) =
pol(F, 221) = −1 and pol(F, ε) = pol(F, 11) = pol(F, 2) = pol(F, 21) = pol(F, 22) = 1.

For the formula F ′ = (P ∧ Q) ↔ (P ∨ Q) we get pol(F ′, ε) = 1 and pol(F ′, p) = 0 for
all p ∈ pos(F ′) different from ε.

14

2.2 Semantics

In classical logic (dating back to Aristotle) there are “only” two truth values “true” and
“false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

Truth Value of a Formula in A

Given a Π-valuation A, its extension to formulas A∗ : FΠ → {0, 1} is defined inductively
as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F) = 1−A∗(F)

A∗(F ∧G) = min(A∗(F),A∗(G))

A∗(F ∨G) = max(A∗(F),A∗(G))

A∗(F → G) = max(1−A∗(F),A∗(G))

A∗(F ↔ G) = if A∗(F) = A∗(G) then 1 else 0

For simplicity, the extension A∗ of A is usually also denoted by A.

15

2.3 Models, Validity, and Satisfiability

Let F be a Π-formula.

We say that F is true under A (A is a model of F ; F is valid in A; F holds under A),
written A |= F , if A(F) = 1.

We say that F is valid or that F is a tautology , written |= F , if A |= F for all Π-
valuations A.

F is called satisfiable if there exists an A such that A |= F . Otherwise F is called
unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all Π-valuations
A we have

if A |= F then A |= G,

or equivalently

A(F) ≤ A(G).

F and G are called equivalent, written F |=| G, if for all Π-valuations A we have

A |= F if and only if A |= G,

or equivalently

A(F) = A(G).

F and G are called equisatisfiable, if either both F and G are satisfiable, or both F and
G are unsatisfiable.

Proposition 2.3 F |= G if and only if |= (F → G).

Proof. (⇒) Suppose that F entails G. Let A be an arbitrary Π-valuation. We have to
show that A |= F → G. If A(F) = 1, then A(G) = 1 (since F |= G), and hence A(F →
G) = max(1− 1, 1) = 1. Otherwise A(F) = 0, then A(F → G) = max(1− 0,A(G)) = 1
independently of A(G). In both cases, A |= F → G.

(⇐) Suppose that F does not entail G. Then there exists a Π-valuation A such that
A |= F , but not A |= G. Consequently, A(F → G) = max(1 − A(F),A(G)) =
max(1− 1, 0) = 0, so (F → G) does not hold under A. ✷

16

Proposition 2.4 F |=| G if and only if |= (F ↔ G).

Proof. Analogously to Prop. 2.3. ✷

Entailment is extended to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:
if A |= G for all G ∈ N , then A |= F .

Note: Formulas are always finite objects; but sets of formulas may be infinite. There-
fore, it is in general not possible to replace a set of formulas by the conjunction of its
elements.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 2.5 F is valid if and only if ¬F is unsatisfiable.

Proof. (⇒) If F is valid, then A(F) = 1 for every valuation A. Hence A(¬F) =
1−A(F) = 0 for every valuation A, so ¬F is unsatisfiable.

(⇐) Analogously. ✷

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

In a similar way, entailment can be reduced to unsatisfiability and vice versa:

Proposition 2.6 N |= F if and only if N ∪ {¬F} is unsatisfiable.

Proposition 2.7 N |= ⊥ if and only if N is unsatisfiable.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, A(F)
depends only on the values of those finitely many variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to check 2n valuations
to see whether F is satisfiable or not ⇒ truth table.

So the satisfiability problem is clearly decidable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check
the satisfiability of a formula. (later more)

17

Replacement Theorem

Proposition 2.8 Let A be a valuation, let F and G be formulas, and let H = H [F]p
be a formula in which F occurs as a subformula at position p.

If A(F) = A(G), then A(H [F]p) = A(H [G]p).

Proof. The proof proceeds by induction over the length of p.

If p = ε, then H [F]ε = F and H [G]ε = G, so A(H [F]p) = A(F) = A(G) = H [G]p by
assumption.

If p = 1q or p = 2q, then H = ¬H1 or H = H1 ◦ H2 for ◦ ∈ {∧,∨,→,↔}. Assume
that p = 1q and that H = H1 ∧ H2, hence H [F]p = H [F]1q = H1[F]q ∧ H2. By the
induction hypothesis, A(H1[F]q) = A(H1[G]q). Hence A(H [F]1q) = A(H1[F]q ∧ H2) =
min(A(H1[F]q),A(H2)) = min(A(H1[G]q),A(H2)) = A(H1[G]q ∧H2) = A(H [G]1q).

The case p = 2q and the other boolean connectives are handled analogously. ✷

Theorem 2.9 Let F and G be equivalent formulas, let H = H [F]p be a formula in
which F occurs as a subformula at position p.

Then H [F]p is equivalent to H [G]p.

Proof. We have to show that A(H [F]p) = A(H [G]p) for every Π-valuation A.

Choose A arbitrarily. Since F and G are equivalent, we know that A(F) = A(G).
Hence, by the previous proposition, A(H [F]p) = A(H [G]p). ✷

18

Some Important Equivalences

Proposition 2.10 The following equivalences hold for all formulas F,G,H :

(F ∧ F) |=| F

(F ∨ F) |=| F (Idempotency)

(F ∧G) |=| (G ∧ F)
(F ∨G) |=| (G ∨ F) (Commutativity)

(F ∧ (G ∧H)) |=| ((F ∧G) ∧H)
(F ∨ (G ∨H)) |=| ((F ∨G) ∨H) (Associativity)

(F ∧ (G ∨H)) |=| ((F ∧G) ∨ (F ∧H))
(F ∨ (G ∧H)) |=| ((F ∨G) ∧ (F ∨H)) (Distributivity)

(F ∧ (F ∨G)) |=| F

(F ∨ (F ∧G)) |=| F (Absorption)

(¬¬F) |=| F (Double Negation)

¬(F ∧G) |=| (¬F ∨ ¬G)
¬(F ∨G) |=| (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧G) |=| F , if G is a tautology
(F ∨G) |=| ⊤, if G is a tautology
(F ∧G) |=| ⊥, if G is unsatisfiable
(F ∨G) |=| F , if G is unsatisfiable (Tautology Laws)

(F ↔ G) |=| ((F → G) ∧ (G → F))
(F ↔ G) |=| ((F ∧G) ∨ (¬F ∧ ¬G)) (Equivalence)

(F → G) |=| (¬F ∨G) (Implication)

An Important Entailment

Proposition 2.11 The following entailment holds for all formulas F,G,H :

(F ∨H) ∧ (G ∨ ¬H) |= F ∨G (Generalized Resolution)

19

2.4 Normal Forms

We define conjunctions of formulas as follows:
∧

0

i=1
Fi = ⊤.

∧
1

i=1
Fi = F1.

∧n+1

i=1
Fi =

∧n

i=1
Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1
Fi = ⊥.

∨1

i=1
Fi = F1.

∨n+1

i=1
Fi =

∨n

i=1
Fi ∨ Fn+1.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable ¬P .

A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction
of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of
literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of
complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions
contains a pair of complementary literals P and ¬P .

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF
formulas is known to be coNP-complete.

20

Conversion to CNF/DNF

Proposition 2.12 For every formula there is an equivalent formula in CNF (and also
an equivalent formula in DNF).

Proof. We describe a (naive) algorithm to convert a formula to CNF.

Apply the following rules as long as possible (modulo commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

H [F ↔ G]p ⇒CNF H [(F → G) ∧ (G → F)]p

Step 2: Eliminate implications:

H [F → G]p ⇒CNF H [¬F ∨G]p

Step 3: Push negations downward:

H [¬(F ∨G)]p ⇒CNF H [¬F ∧ ¬G]p

H [¬(F ∧G)]p ⇒CNF H [¬F ∨ ¬G]p

Step 4: Eliminate multiple negations:

H [¬¬F]p ⇒CNF H [F]p

Step 5: Push disjunctions downward:

H [(F ∧ F ′) ∨G]p ⇒CNF H [(F ∨G) ∧ (F ′ ∨G)]p

Step 6: Eliminate ⊤ and ⊥:

H [F ∧ ⊤]p ⇒CNF H [F]p

H [F ∧ ⊥]p ⇒CNF H [⊥]p

H [F ∨ ⊤]p ⇒CNF H [⊤]p

H [F ∨ ⊥]p ⇒CNF H [F]p

H [¬⊥]p ⇒CNF H [⊤]p

H [¬⊤]p ⇒CNF H [⊥]p

21

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and 5 are a bit more
complicated.

For step 1, we can prove termination in the following way: We define a function µ1

from formulas to positive integers such that µ1(⊥) = µ1(⊤) = µ1(P) = 1, µ1(¬F) =
µ1(F), µ1(F ∧ G) = µ1(F ∨ G) = µ1(F → G) = µ1(F) + µ1(G), and µ1(F ↔ G) =
2µ1(F) + 2µ1(G) + 1. Observe that µ1 is constructed in such a way that µ1(F) > µ1(G)
implies µ1(H [F]) > µ1(H [G]) for all formulas F , G, and H . Furthermore, µ1 has
the property that swapping the arguments of some ∧ or ∨ in a formula F does not
change the value of µ1(F). (This is important since the transformation rules can be
applied modulo commutativity of ∧ and ∨.). Using these properties, we can show that
whenever a formula H ′ is the result of applying the rule of step 1 to a formula H , then
µ1(H) > µ1(H

′). Since µ1 takes only positive integer values, step 1 must terminate.

Termination of steps 3 and 5 is proved similarly. For step 3, we use function µ2 from
formulas to positive integers such that µ2(⊥) = µ2(⊤) = µ2(P) = 1, µ2(¬F) = 2µ2(F),
µ2(F ∧G) = µ2(F ∨G) = µ2(F → G) = µ2(F ↔ G) = µ2(F) + µ2(G) + 1. Whenever a
formula H ′ is the result of applying a rule of step 3 to a formula H , then µ2(H) > µ2(H

′).
Since µ2 takes only positive integer values, step 3 must terminate.

For step 5, we use a function µ3 from formulas to positive integers such that µ3(⊥) =
µ3(⊤) = µ3(P) = 1, µ3(¬F) = µ3(F) + 1, µ3(F ∧ G) = µ3(F → G) = µ3(F ↔ G) =
µ3(F) + µ3(G) + 1, and µ3(F ∨G) = 2µ3(F)µ3(G). Again, if a formula H ′ is the result
of applying a rule of step 5 to a formula H , then µ3(H) > µ3(H

′). Since µ3 takes only
positive integer values, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions
have to be pushed downward in step 5. ✷

Negation Normal Form (NNF)

The formula after application of Step 4 is said to be in Negation Normal Form, i.e., it
contains neither → nor ↔ and negation symbols only occur in front of propositional
variables (atoms).

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the
size of the original one.

22

2.5 Improving the CNF Transformation

The goal

“Given a formula F , find an equivalent formula G in CNF”

is unpractical.

But if we relax the requirement to

“Given a formula F , find an equisatisfiable formula G in CNF”

we can get an efficient transformation.

Tseitin Transformation

Proposition 2.13 A formula H [F]p is satisfiable if and only if H [Q]p ∧ (Q ↔ F) is
satisfiable, where Q is a new propositional variable that works as an abbreviation for F .

Satisfiability-preserving CNF transformation (Tseitin 1970):

Use the rule above recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables Q and definitions Q ↔ F).

Convert of the resulting conjunction to CNF (this increases the size only by an addi-
tional factor, since each formula Q ↔ F yields at most four clauses in the CNF).

Polarity-based CNF Transformation

A further improvement is possible by taking the polarity of the subformula F into
account.

Proposition 2.14 Let A be a valuation, let F and G be formulas, and let H = H [F]p
be a formula in which F occurs as a subformula at position p.

If pol(H, p) = 1 and A(F) ≤ A(G), then A(H [F]p) ≤ A(H [G]p).

If pol(H, p) =−1 and A(F) ≥ A(G), then A(H [F]p) ≤ A(H [G]p).

Proof. Exercise. ✷

23

Let Q be a propositional variable not occurring in H [F]p.

Define the formula def(H, p,Q, F) by

• (Q → F), if pol(H, p) = 1,

• (F → Q), if pol(H, p) = −1,

• (Q ↔ F), if pol(H, p) = 0.

Proposition 2.15 Let Q be a propositional variable not occurring in H [F]p. Then
H [F]p is satisfiable if and only if H [Q]p ∧ def(H, p,Q, F) is satisfiable.

Proof. (⇒) Since H [F]p is satisfiable, there exists a Π-valuation A such that A |=
H [F]p. Let Π

′ = Π∪{Q} and define the Π′-valuationA′ byA′(P) = A(P) for P ∈ Π and
A′(Q) = A(F). Obviously A′(def(H, p,Q, F)) = 1; moreover A′(H [Q]p) = A′(H [F]p) =
A(H [F]p) = 1 by Prop. 2.8, so H [Q]p ∧ def(H, p,Q, F) is satisfiable.

(⇐) Let A be a valuation such that A |= H [Q]p ∧ def(H, p,Q, F). So A(H [Q]p) = 1
and A(def(H, p,Q, F)) = 1. We will show that A |= H [F]p.

If pol(H, p) = 0, then def(H, p,Q, F) = (Q ↔ F), so A(Q) = A(F), hence A(H [F]p) =
A(H [Q]p) = 1 by Prop. 2.8.

If pol(H, p) = 1, then def(H, p,Q, F) = (Q → F), so A(Q) ≤ A(F). By Prop. 2.14,
A(H [F]p) ≥ A(H [Q]p) = 1, so A(H [F]p) = 1.

If pol(H, p) = −1, then def(H, p,Q, F) = (F → Q), so A(F) ≤ A(Q). By Prop. 2.14,
A(H [F]p) ≥ A(H [Q]p) = 1, so A(H [F]p) = 1. ✷

Optimized CNF

Not every introduction of a definition for a subformula leads to a smaller CNF.

The number of potentially generated clauses is a good indicator for useful CNF trans-
formations.

24

