Assignment 1 (CNF transformation)

Transform the first-order formula

$$
F=\exists z \forall x((\exists y P(z, y)) \leftrightarrow(\exists y Q(x, y)))
$$

into clause normal form using the improved algorithm from Section 3.6. (There are no subformulas in F for which one should introduce a definition.)
Are the formula F and its clause normal form equivalent? Give a brief explanation.

Assignment 2 (Ordered resolution with selection) $\quad(4+10=14$ points)
Let $\Sigma=(\{f / 1, g / 1, h / 1, b / 0, c / 0\},\{P / 2\})$; let N be the following set of clauses over Σ :

$$
\begin{gather*}
P(f(x), f(x)) \tag{1}\\
P(g(x), g(x)) \tag{2}\\
P(h(x), h(x)) \vee P(h(y), h(b)) \tag{3}\\
\neg P(f(x), y) \vee \neg P(x, y) \vee \neg P(y, g(x)) \tag{4}\\
\neg P(x, y) \vee \neg P(b, c) \tag{5}
\end{gather*}
$$

Suppose that the atom ordering \succ is a Knuth-Bendix ordering with weight 1 for all function and predicate symbols and variables and the precedence $P>f>g>h>b>c$.

Part (a)
Which literals in the clauses (1)-(5) are maximal in their clause?

Part (b)

Assume that the selection function sel selects the second literal in (5) and no other literals. Compute all $\mathrm{Res}_{\text {sel }}^{\succ}$ inferences between the clauses (1)-(5). (Do not compute inferences between derived clauses. Do not compute any inferences that violate the restrictions of the calculus.)

Assignment 3 (E-Algebras)

Let $\Sigma=(\Omega, \emptyset)$ be a first-order signature, let E be a set of Σ-equations such that for every equation $s \approx s^{\prime}$ in E neither s nor s^{\prime} is a variable. For any term $t \in \mathrm{~T}_{\Sigma}(X)$ let $[t]$ denote the congruence class of t w.r.t. E.
Prove or refute: For every variable $x \in X$ we have $[x]=\{x\}$.

Let $\Sigma=(\Omega, \emptyset)$ be a finite signature. For $t \in \mathrm{~T}_{\Sigma}(X)$ we define $\operatorname{depth}(t)=$ $\max \{|p| \mid p \in \operatorname{pos}(t)\}$. The binary relation \succ on $\mathrm{T}_{\Sigma}(X)$ is defined by:
$s \succ t$ if and only if

$$
\#(x, s) \geq \#(x, t) \text { for all variables } x \text { and } \operatorname{depth}(s)>\operatorname{depth}(t)
$$

Show that \succ is not a reduction ordering.

Assignment 5 (Critical pairs, Termination)

$$
(8+10=18 \text { points })
$$

Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{b / 0, c / 0, f / 2, g / 1, h / 2\}$ and let R be the following rewrite system:

$$
\begin{align*}
f(f(x, c), x) & \rightarrow h(x, b) \tag{1}\\
f(y, b) & \rightarrow g(y) \tag{2}\\
h(x, x) & \rightarrow g(f(x, c)) \tag{3}
\end{align*}
$$

Part (a)

Find a Knuth-Bendix ordering \succ such that $\rightarrow_{R} \subseteq \succ$. Specify the weights and precedence of the ordering.

Part (b)

Compute all critical pairs between rules in R and check whether they are joinable in R.

Assignment 6 ($O B D D s$)

(12 points)
Let F_{n} be a propositional formula over $\left\{P_{1}, \ldots, P_{n}\right\}$ such that $\mathcal{A}\left(F_{n}\right)=1$ if and only if \mathcal{A} maps exactly one of the propositional variables P_{1}, \ldots, P_{n} to 1 and the others to 0 . How many nodes does a reduced OBDD for F_{n} have (including the leaf nodes 0 and 1)?

