Assignment 1 (CNF transformation)

(12 points)

Transform the first-order formula

$$F = \exists z \,\forall x \, \Big(\big(\exists y \, P(z, y) \big) \leftrightarrow \big(\exists y \, Q(x, y) \big) \Big)$$

into clause normal form using the improved algorithm from Section 3.6. (There are no subformulas in F for which one should introduce a definition.) Are the formula F and its clause normal form equivalent? Give a brief explanation.

Assignment 2 (Ordered resolution with selection) (4 + 10 = 14 points)Let $\Sigma = (\{f/1, g/1, h/1, b/0, c/0\}, \{P/2\})$; let N be the following set of clauses over Σ :

$$P(f(x), f(x)) \tag{1}$$
$$P(q(x), q(x)) \tag{2}$$

$$P(g(x), g(x)) \tag{2}$$

$$P(h(x), h(x)) \lor P(h(y), h(b))$$
(3)

$$\neg P(f(x), y) \lor \neg P(x, y) \lor \neg P(y, g(x))$$
(4)

$$\neg P(x,y) \lor \neg P(b,c) \tag{5}$$

Suppose that the atom ordering \succ is a Knuth-Bendix ordering with weight 1 for all function and predicate symbols and variables and the precedence P > f > g > h > b > c.

Part (a)

Which literals in the clauses (1)–(5) are maximal in their clause?

Part (b)

Assume that the selection function sel selects the second literal in (5) and no other literals. Compute all $\operatorname{Res}_{sel}^{\succ}$ inferences between the clauses (1)–(5). (Do not compute inferences between derived clauses. Do not compute any inferences that violate the restrictions of the calculus.)

Assignment 3 (E-Algebras)

(12 points)

Let $\Sigma = (\Omega, \emptyset)$ be a first-order signature, let E be a set of Σ -equations such that for every equation $s \approx s'$ in E neither s nor s' is a variable. For any term $t \in T_{\Sigma}(X)$ let [t] denote the congruence class of t w.r.t. E. Prove or refute: For every variable $x \in X$ we have $[x] = \{x\}$. Assignment 4 (Reduction orderings)

(12 points)

Let $\Sigma = (\Omega, \emptyset)$ be a finite signature. For $t \in T_{\Sigma}(X)$ we define depth $(t) = \max\{|p| \mid p \in \text{pos}(t)\}$. The binary relation \succ on $T_{\Sigma}(X)$ is defined by:

 $s \succ t$ if and only if

 $\#(x,s) \ge \#(x,t)$ for all variables x and depth(s) > depth(t).

Show that \succ is not a reduction ordering.

Assignment 5 (Critical pairs, Termination) (8 + 10 = 18 points)Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{b/0, c/0, f/2, g/1, h/2\}$ and let R be the following rewrite system:

$f(f(x,c),x) \to h(x,b)$	(1)
$f(y,b) \to g(y)$	(2)
$h(x,x) \to g(f(x,c))$	(3)

Part (a)

Find a Knuth-Bendix ordering \succ such that $\rightarrow_R \subseteq \succ$. Specify the weights and precedence of the ordering.

Part (b)

Compute all critical pairs between rules in R and check whether they are joinable in R.

Assignment 6 (OBDDs)

(12 points)

Let F_n be a propositional formula over $\{P_1, \ldots, P_n\}$ such that $\mathcal{A}(F_n) = 1$ if and only if \mathcal{A} maps exactly one of the propositional variables P_1, \ldots, P_n to 1 and the others to 0. How many nodes does a reduced OBDD for F_n have (including the leaf nodes [0] and [1])?