Assignment 1 (OBDDs)

(3 + 6 + 3 = 12 points)

Let F be the propositional formula $P \land (Q \lor R) \land S$.

Part (a) Give the reduced OBDD for F w.r.t. the ordering P < Q < R < S.

Part (b) Find a total ordering over $\{P, Q, R, S\}$ such that the reduced OBDD for F has 6 non-leaf nodes. Give the resulting reduced OBDD.

Part (c) For how many total orderings over $\{P, Q, R, S\}$ does the reduced OBDD for F have 6 non-leaf nodes?

Assignment 2 (Ordered Resolution) (7 + 7 = 14 points)

In Sect. 3.13 of the lecture notes (p. 79), the inference rules for ground resolution with ordering restrictions (without selection functions) are given by

(Ground) Ordered Resolution:

$$\frac{D \lor A \quad C \lor \neg A}{D \lor C} \quad \text{if } A \succ L \text{ for all } L \text{ in } D \text{ and } \neg A \succeq L \text{ for all } L \text{ in } C.$$

(Ground) Ordered Factorization:

$$\frac{C \lor A \lor A}{C \lor A} \quad \text{if } A \succeq L \text{ for all } L \text{ in } C.$$

This calculus is sound and refutationally complete for sets of ground clauses.

Suppose that we replace the ordering restriction for the first inference rule by "if $A \succ L$ for all L in D and $A \succeq L$ for all L in C."

Part (a) Is the calculus with this modification still sound? If yes, give a short explanation; if no, give a counter example.

Part (b) Is the calculus with this modification still refutationally complete? If yes, give a short explanation; if no, give a counter example.

Assignment 3 (E-Algebras)

(12 points)

Let $\Sigma = (\Omega, \emptyset)$ be a first-order signature with $\Omega = \{f/1, b/0, c/0, d/0\}$. Let E be the set of Σ -equations

$$\{ \forall x \, (f(x) \approx b), \ c \approx d \},\$$

let $X = \{x, y, z\}$ be a set of variables. For any $t \in T_{\Sigma}(X)$ let [t] denote the congruence class of t w.r.t. E. Let $\mathcal{T} = T_{\Sigma}(X)/E$, let $U_{\mathcal{T}}$ be the universe of \mathcal{T} , and let $\beta : X \to U_{\mathcal{T}}$ be the assignment that maps every variable to [c]. Decide for each of the following statements whether they are true or false:

- (1) [z] is a finite set of Σ -terms. (5) $U_{\mathcal{T}}$ is finite.
- (2) [f(z)] is a finite set of Σ -terms. (6) $[b] \in U_{\mathcal{T}}$.
- (3) [c] is a set of ground Σ -terms. (7) $\{x, y\} \in U_{\mathcal{T}}$.
- (4) [f(c)] is a set of ground Σ -terms. (8) $\mathcal{T}(\beta)(\forall z \ (z \approx f(x))) = 1.$

(Note on grading: A yes/no answer is sufficient; you do not have to give any explanations. However, you need at least five correct answers to get any points for assignment 3. Missing answers count like false answers.)

Assignment 4 (Term Orderings) (7 + 7 = 14 points)

Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering on Ω , let $s, t \in T_{\Sigma}(X)$.

Part (a) Prove: If s contains a subterm $s' = f(s_1, \ldots, s_n)$ such that $var(s') \supseteq var(t)$ and $f \succ g$ for all function symbols g occurring in t, then $s \succ_{lpo} t$.

Part (b) Refute: If s contains a subterm $s' = f(s_1, \ldots, s_n)$ such that $var(s) \supseteq var(t)$ and $f \succ g$ for all function symbols g occurring in t, then $s \succ_{lpo} t$.

Assignment 5 (Critical Pairs, Termination) (8 + 6 = 14 points)Let E be the following set of equations over $\Sigma = (\{f/1, g/2, h/2, b/0, c/0\}, \emptyset).$

$$f(f(x)) \approx g(b, x)$$
(1)

$$h(f(y), y') \approx f(h(y, y'))$$
(2)

$$g(h(z, z), c) \approx h(z, b)$$
(3)

Part (a) Suppose that the three equations in E are turned into rewrite rules by orienting them from left to right. Give all (non-trivial) critical pairs between the resulting three rules.

Part (b) It is possible to orient the equations in E using an appropriate KBO, so that there are no critical pairs between the resulting rules. Give the weights and precedence of the KBO; explain how the equations are oriented.

Assignment 6 (Dependency Pairs) (3 + 8 + 3 = 14 points)Part (a) Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{f/2, g/2, h/1, k/1, b/0\}$. Compute the dependency pairs of the following rewrite system R over Σ :

$$f(x, y) \rightarrow g(k(y), y) \qquad (1)$$

$$g(h(x), y) \rightarrow f(x, y) \qquad (2)$$

$$g(x, h(y)) \rightarrow h(f(x, y)) \qquad (3)$$

$$k(x) \rightarrow x \qquad (4)$$

$$k(h(x)) \rightarrow k(x) \qquad (5)$$

Part (b) Compute the approximated dependency graph for R (using cap and ren) and use the subterm criterion to reduce the graph as much as possible. If a graph is modified, depict both the original and the modified graph and indicate the strongly connected components in the graphs.

Part (c) There is one cycle K in the approximated dependency graph for R that cannot be eliminated using the subterm criterion. In fact, there is a K-minimal infinite rewrite sequence for this cycle. How does it look like?