Let F be the propositional formula $P \wedge(Q \vee R) \wedge S$.
Part (a) Give the reduced OBDD for F w.r.t. the ordering $P<Q<R<S$.
Part (b) Find a total ordering over $\{P, Q, R, S\}$ such that the reduced OBDD for F has 6 non-leaf nodes. Give the resulting reduced OBDD.

Part (c) For how many total orderings over $\{P, Q, R, S\}$ does the reduced OBDD for F have 6 non-leaf nodes?

Assignment 2 (Ordered Resolution)

$$
(7+7=14 \text { points })
$$

In Sect. 3.13 of the lecture notes (p. 79), the inference rules for ground resolution with ordering restrictions (without selection functions) are given by
(Ground) Ordered Resolution:

$$
\frac{D \vee A \quad C \vee \neg A}{D \vee C} \quad \text { if } A \succ L \text { for all } L \text { in } D \text { and } \neg A \succeq L \text { for all } L \text { in } C .
$$

(Ground) Ordered Factorization:

$$
\frac{C \vee A \vee A}{C \vee A} \quad \text { if } A \succeq L \text { for all } L \text { in } C .
$$

This calculus is sound and refutationally complete for sets of ground clauses.
Suppose that we replace the ordering restriction for the first inference rule by "if $A \succ L$ for all L in D and $A \succ L$ for all L in C."

Part (a) Is the calculus with this modification still sound? If yes, give a short explanation; if no, give a counter example.

Part (b) Is the calculus with this modification still refutationally complete? If yes, give a short explanation; if no, give a counter example.

Assignment 3 (E-Algebras)

Let $\Sigma=(\Omega, \emptyset)$ be a first-order signature with $\Omega=\{f / 1, b / 0, c / 0, d / 0\}$. Let E be the set of Σ-equations

$$
\{\forall x(f(x) \approx b), c \approx d\}
$$

let $X=\{x, y, z\}$ be a set of variables. For any $t \in \mathrm{~T}_{\Sigma}(X)$ let $[t]$ denote the congruence class of t w.r.t. E. Let $\mathcal{T}=\mathrm{T}_{\Sigma}(X) / E$, let $U_{\mathcal{T}}$ be the universe of \mathcal{T}, and let $\beta: X \rightarrow U_{\mathcal{T}}$ be the assignment that maps every variable to $[c]$. Decide for each of the following statements whether they are true or false:
(1) $[z]$ is a finite set of Σ-terms.
(5) $U_{\mathcal{T}}$ is finite.
(2) $[f(z)]$ is a finite set of Σ-terms.
(6) $[b] \in U_{\mathcal{T}}$.
(3) $[c]$ is a set of ground Σ-terms.
(7) $\{x, y\} \in U_{\mathcal{T}}$.
(4) $[f(c)]$ is a set of ground Σ-terms.
(8) $\mathcal{T}(\beta)(\forall z(z \approx f(x)))=1$.
(Note on grading: A yes/no answer is sufficient; you do not have to give any explanations. However, you need at least five correct answers to get any points for assignment 3. Missing answers count like false answers.)

Assignment 4 (Term Orderings)

$$
(7+7=14 \text { points })
$$

Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering on Ω, let $s, t \in \mathrm{~T}_{\Sigma}(X)$.

Part (a) Prove: If s contains a subterm $s^{\prime}=f\left(s_{1}, \ldots, s_{n}\right)$ such that $\operatorname{var}\left(s^{\prime}\right) \supseteq$ $\operatorname{var}(t)$ and $f \succ g$ for all function symbols g occurring in t, then $s \succ_{\mathrm{lpo}} t$.
Part (b) Refute: If s contains a subterm $s^{\prime}=f\left(s_{1}, \ldots, s_{n}\right)$ such that $\operatorname{var}(s) \supseteq$ $\operatorname{var}(t)$ and $f \succ g$ for all function symbols g occurring in t, then $s \succ_{\mathrm{lpo}} t$.

Assignment 5 (Critical Pairs, Termination) $\quad(8+6=14$ points $)$

Let E be the following set of equations over $\Sigma=(\{f / 1, g / 2, h / 2, b / 0, c / 0\}, \emptyset)$.

$$
\begin{align*}
f(f(x)) & \approx g(b, x) \tag{1}\\
h\left(f(y), y^{\prime}\right) & \approx f\left(h\left(y, y^{\prime}\right)\right) \tag{2}\\
g(h(z, z), c) & \approx h(z, b) \tag{3}
\end{align*}
$$

Part (a) Suppose that the three equations in E are turned into rewrite rules by orienting them from left to right. Give all (non-trivial) critical pairs between the resulting three rules.

Part (b) It is possible to orient the equations in E using an appropriate KBO, so that there are no critical pairs between the resulting rules. Give the weights and precedence of the KBO; explain how the equations are oriented.

Assignment 6 (Dependency Pairs)
 ($3+8+3=14$ points)

Part (a) Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{f / 2, g / 2, h / 1, k / 1, b / 0\}$. Compute the dependency pairs of the following rewrite system R over Σ :

$$
\begin{align*}
f(x, y) & \rightarrow g(k(y), y) \tag{1}\\
g(h(x), y) & \rightarrow f(x, y) \tag{2}\\
g(x, h(y)) & \rightarrow h(f(x, y)) \tag{3}\\
k(x) & \rightarrow x \tag{4}\\
k(h(x)) & \rightarrow k(x) \tag{5}
\end{align*}
$$

Part (b) Compute the approximated dependency graph for R (using cap and ren) and use the subterm criterion to reduce the graph as much as possible. If a graph is modified, depict both the original and the modified graph and indicate the strongly connected components in the graphs.

Part (c) There is one cycle K in the approximated dependency graph for R that cannot be eliminated using the subterm criterion. In fact, there is a K-minimal infinite rewrite sequence for this cycle. How does it look like?

