Assignment 1 ($C D C L$)

$$
(8+4+4=16 \text { points })
$$

Let N be the following set of propositional clauses:

P			V	S				
$P \vee$	Q				V	$\neg T$		
	Q		V	$\neg S$			\checkmark	$\neg U$
	$\neg Q$	$\vee \quad R$	V	S	V	$\neg T$	V	U
		R	V	$\neg S$				
		R			V	T		
$\neg P$			V	S			V	$\neg U$
		$\neg R$	V	$\neg S$				
		$\neg R$			V	T	V	U
$\neg P$		$\vee \neg R$	V	S	V	$\neg T$		

Part (a)

Use the CDCL procedure to compute a model of N.

Part (b)

Use the final state of the CDCL procedure in part (a) to determine the number of models of N in which P is true. Give a brief explanation.

Part (c)

Use the CDCL procedure to show that N has no model in which P is false.
For both part (a) and (c):
Use the CDCL inference rules with a reasonable strategy. If you use the Decide rule, use the largest undefined positive literal according to the ordering $P>Q>R>S>T>U$. If you use the Backjump rule, determine a suitable backjump clause using the 1UIP method and use the best possible successor state for that backjump clause.

Assignment 2 (Resolution)

$$
(8+8=16 \text { points })
$$

Let $\Sigma=(\Omega, \Pi)$ be a signature, let N be a set of ground Σ-clauses.
Part (a)
Prove or refute: All clauses in $\operatorname{Res}^{*}(N)$ are tautologies if and only if all clauses in N are tautologies.
Part (b)
Prove or refute: $\operatorname{Res}(N)$ is satisfiable if and only if N is satisfiable.

Let Π be a set of propositional variables. Let N and N^{\prime} be sets of clauses over Π. Let S be a set of literals that does not contain any complementary literals. Prove: If every clause in N contains at least one literal L with $L \in S$ and if no clause in N^{\prime} contains a literal L with $\bar{L} \in S$, then $N \cup N^{\prime}$ is satisfiable if and only if N^{\prime} is satisfiable.

Assignment 4 (First-order Logic, Semantics)
Let $\Sigma=(\Omega, \Pi)$ be a first-order signature with $\Omega=\{b / 0, f / 1\}$ and $\Pi=\{P / 1\}$. Decide for each of the following statements whether they are true or false:
(1) There is a Σ-model \mathcal{A} of $P(b) \wedge \neg P(f(b))$ such that $U_{\mathcal{A}}=\{7,8,9\}$.
(2) There is a Σ-model \mathcal{A} of $P(b) \wedge \neg P(f(f(b)))$ such that $f_{\mathcal{A}}(a)=a$ for every $a \in U_{\mathcal{A}}$.
(3) $P(b) \wedge \neg P(f(b))$ has a Herbrand model.
(4) $P(b) \wedge \forall x \neg P(x)$ has a Herbrand model.
(5) $\forall x P(f(x))$ has a Herbrand model with a two-element universe.
(6) $\forall x P(x)$ has exactly one Herbrand model.
(7) $\forall x P(f(x))$ entails $\forall x P(f(f(x)))$.
(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least four correct answers to get any points for this assignment. Missing answers count like false answers.)

Assignment 5 (First-order Logic, CNF Transformation)
Let $\Sigma=(\{c / 0, f / 1\},\{P / 4, Q / 4\})$. Transform the Σ-formula

$$
F=\exists v \forall x \forall y \forall z \neg \forall w(\neg P(c, w, z, x) \wedge Q(w, y, f(x), v))
$$

into clause normal form using the improved algorithm from Section 3.6. (There are no subformulas in F for which one should introduce a definition.)

Assignment 6 (Clause Orderings)

Find a strict total ordering \succ on the ground atoms $P(b), P(c), Q, R$ such that

$$
\begin{array}{r}
P(b) \vee \neg P(c) \succ_{C} \neg P(b) \vee P(c) \\
P(b) \vee P(b) \vee P(b) \vee R \succ_{C} P(b) \vee R \vee R \\
\neg P(b) \vee Q \succ_{C} P(c) \vee R \tag{3}
\end{array}
$$

