Assignment 1 (CDCL)

Let N be the following set of propositional clauses:

P					\vee	S					(1)
P	\vee	Q					\vee	$\neg T$			(2)
		Q			\vee	$\neg S$			\vee	$\neg U$	(3)
		$\neg Q$	V	R	\vee	S	\vee	$\neg T$	\vee	U	(4)
				R	\vee	$\neg S$					(5)
				R			V	T			(6)
$\neg P$					\vee	S			\vee	$\neg U$	(7)
				$\neg R$	\vee	$\neg S$					(8)
				$\neg R$			V	T	V	U	(9)
$\neg P$			\vee	$\neg R$	\vee	S	\vee	$\neg T$			(10)

Part (a)

Use the CDCL procedure to compute a model of N.

Part (b)

Use the final state of the CDCL procedure in part (a) to determine the number of models of N in which P is true. Give a brief explanation.

Part (c)

Use the CDCL procedure to show that N has no model in which P is false.

For both part (a) and (c):

Use the CDCL inference rules with a reasonable strategy. If you use the *Decide* rule, use the largest undefined positive literal according to the ordering P > Q > R > S > T > U. If you use the *Backjump* rule, determine a suitable backjump clause using the 1UIP method and use the best possible successor state for that backjump clause.

Assignment 2 (Resolution)

(8 + 8 = 16 points)

Let $\Sigma = (\Omega, \Pi)$ be a signature, let N be a set of ground Σ -clauses.

Part (a)

Prove or refute: All clauses in $Res^*(N)$ are tautologies if and only if all clauses in N are tautologies.

Part (b)

Prove or refute: Res(N) is satisfiable if and only if N is satisfiable.

Assignment 3 (Propositional Logic)

(12 points)

Let Π be a set of propositional variables. Let N and N' be sets of clauses over Π . Let S be a set of literals that does not contain any complementary literals. Prove: If every clause in N contains at least one literal L with $L \in S$ and if no clause in N' contains a literal L with $\overline{L} \in S$, then $N \cup N'$ is satisfiable if and only if N' is satisfiable.

Assignment 4 (First-order Logic, Semantics) (12 points)

Let $\Sigma = (\Omega, \Pi)$ be a first-order signature with $\Omega = \{b/0, f/1\}$ and $\Pi = \{P/1\}$. Decide for each of the following statements whether they are true or false:

- (1) There is a Σ -model \mathcal{A} of $P(b) \wedge \neg P(f(b))$ such that $U_{\mathcal{A}} = \{7, 8, 9\}$.
- (2) There is a Σ -model \mathcal{A} of $P(b) \wedge \neg P(f(f(b)))$ such that $f_{\mathcal{A}}(a) = a$ for every $a \in U_{\mathcal{A}}$.
- (3) $P(b) \wedge \neg P(f(b))$ has a Herbrand model.
- (4) $P(b) \wedge \forall x \neg P(x)$ has a Herbrand model.
- (5) $\forall x P(f(x))$ has a Herbrand model with a two-element universe.
- (6) $\forall x P(x)$ has exactly one Herbrand model.
- (7) $\forall x P(f(x))$ entails $\forall x P(f(f(x)))$.

(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least four correct answers to get any points for this assignment. Missing answers count like false answers.)

Assignment 5 (First-order Logic, CNF Transformation) (12 points)Let $\Sigma = (\{c/0, f/1\}, \{P/4, Q/4\})$. Transform the Σ -formula

$$F = \exists v \,\forall x \,\forall y \,\forall z \,\neg \forall w \Big(\neg P(c, w, z, x) \wedge Q(w, y, f(x), v) \Big)$$

into clause normal form using the improved algorithm from Section 3.6. (There are no subformulas in F for which one should introduce a definition.)

Assignment 6 (Clause Orderings) (12 points)

 $\mathbf{D}(\mathbf{1}) \setminus \mathbf{D}(\mathbf{1})$

Find a strict total ordering \succ on the ground atoms P(b), P(c), Q, R such that

$$P(b) \lor \neg P(c) \succ_C \neg P(b) \lor P(c)$$
(1)
$$P(b) \lor P(b) \lor R \succ_C P(b) \lor R \lor R$$
(2)
$$\neg P(b) \lor Q \succ_C P(c) \lor R$$
(3)