Let (A, \rightarrow) be an abstract reduction system such that every element of A has exactly one normal form w.r.t. \rightarrow. For every $b \in A$ define $L(b)$ as the minimal $n \in \mathbb{N}$ such that $b \rightarrow^{n} b^{\prime}$ and b^{\prime} is in normal form w.r.t. \rightarrow. Define the binary relation \Rightarrow over A by $b \Rightarrow c$ if and only if $b \rightarrow c$ and $L(b)>L(c)$.

Part (a) Give an example that shows that $\rightarrow \neq \Rightarrow$.
Part (b) Show that for every $b \in A$ we have $b \Rightarrow^{*} b^{\prime}$, where b^{\prime} is the normal form of b w.r.t. \rightarrow.

Part (c) Use part (b) to show that $\leftrightarrow^{*}=\Leftrightarrow^{*}$.

Assignment 2 (Algebras, Herbrand Models)
Let $\Sigma=(\Omega, \Pi)$ be a first-order signature with $\Omega=\{b / 0, f / 1\}$ and $\Pi=\{P / 1\}$. Let F be the Σ-formula

$$
\neg P(b) \wedge P(f(f(b))) \wedge \forall x(\neg P(x) \vee P(f(x)))
$$

Decide for each of the following statements whether they are true or false:
(1) There is a Σ-model \mathcal{A} of F such that $U_{\mathcal{A}}=\{7,8,9\}$.
(2) There is a Σ-model \mathcal{A} of F such that $f_{\mathcal{A}}(a)=a$ for every $a \in U_{\mathcal{A}}$.
(3) F has exactly four Σ-models.
(4) Every Σ-model of F is a model of $\exists x P(x)$.
(5) Every Σ-model of F is a model of $\forall x P(f(f(x)))$.
(6) There are infinitely many Herbrand interpretations over Σ.
(7) There is a Herbrand model of F over Σ whose universe has exactly two elements.
(8) There is a Herbrand model of F over Σ with an infinite universe.
(9) F has exactly two Herbrand models over Σ.
(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least five correct answers to get any points for this assignment. Missing answers count like false answers.)

Assignment 3 (Algebras)

Let $\Sigma=(\Omega, \emptyset)$, let \mathcal{A} and \mathcal{B} be Σ-algebras. A function $\phi: U_{\mathcal{A}} \rightarrow U_{\mathcal{B}}$ is called a Σ-homomorphism, if for all $f / n \in \Omega$ and all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$, we have $\phi\left(f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{\mathcal{B}}\left(\phi\left(a_{1}\right), \ldots, \phi\left(a_{n}\right)\right)$. Let $\forall \vec{x}(s \approx t)$ be a universally quantified Σ-equation. Prove: If $\phi: U_{\mathcal{A}} \rightarrow U_{\mathcal{B}}$ is a surjective (i.e., onto) Σ-homomorphism, and $\mathcal{A} \models \forall \vec{x}(s \approx t)$, then $\mathcal{B} \models \forall \vec{x}(s \approx t)$.
(Note: Even though this was not explicitly said during the lecture, you may use Lemma 3.21 also for first-order logic with equality.)

Let $\Sigma=(\{f / 1, b / 0, c / 0\},\{P / 1\})$; let N be the following set of Σ-clauses:

$$
\begin{gather*}
P(b) \tag{1}\\
P(f(c)) \tag{2}\\
\neg P(x) \vee P(f(x)) \tag{3}
\end{gather*}
$$

Let \succ be a Knuth-Bendix ordering with weight 1 for all function and predicate symbols and variables and the precedence $P>f>b>c$. The ordering is extended to ground literals and ground clauses as usual. Give the smallest non-empty ground Σ-clauses $C_{1}, C_{2}, C_{3}, C_{4}$ such that
(a) $C_{1} \in G_{\Sigma}(N)$ and $C_{1} \in \operatorname{Red}(N)$,
(b) $C_{2} \in G_{\Sigma}(N)$ and $C_{2} \notin \operatorname{Red}(N)$,
(c) $C_{3} \notin G_{\Sigma}(N)$ and $C_{3} \in \operatorname{Red}(N)$,
(d) $C_{4} \notin G_{\Sigma}(N)$ and $C_{4} \notin \operatorname{Red}(N)$.

Assignment 5 (Tableaux)

$$
(7+7=14 \text { points })
$$

Check whether the following propositional formulas are valid or not using semantic tableaux. Give a brief explanation. (Use exactly the expansion rules given in the lecture. Do not use shortcuts; do not convert the formulas to NNF, CNF, or DNF.)

Part (a)

$$
(P \rightarrow Q) \rightarrow((P \vee R) \rightarrow(Q \vee R))
$$

Part (b)

$$
(P \vee Q) \rightarrow(P \wedge Q)
$$

Assignment 6 (Knuth-Bendix Completion)
Let E be the following set of equations over $\Sigma=(\{f / 2, g / 1, h / 1, b / 0\}, \emptyset)$.

$$
\begin{align*}
f(g(x), x) & \approx b \\
f(x, b) & \approx x \tag{2}\\
g(h(x)) & \approx x \tag{3}
\end{align*}
$$

Apply the Knuth-Bendix completion procedure to E and transform it into a finite convergent term rewrite system; use a Knuth-Bendix ordering with weight 1 for all function symbols and variables and the precedence $f>g>$ $h>b$. Use a reasonable strategy.

