Assignment 1 (Semantics of FOL)

(14 points)

Let $\Sigma = (\Omega, \Pi)$ be a signature. For every Σ -formula F without equality let $\operatorname{neg}(F)$ be the formula that one obtains from F by replacing every atom $P(t_1, \ldots, t_n)$ in F by its negation $\neg P(t_1, \ldots, t_n)$ for every $P/n \in \Pi$. Prove: If F is valid, then $\operatorname{neg}(F)$ is valid.

(Note: Somewhere in the proof you need an induction over the structure of formulas. It is sufficient if you check the base cases and \land , \neg , and \exists . The other boolean connectives and quantifiers (\lor , \rightarrow , \leftrightarrow , \forall) can be handled analogously; you may omit them.)

Assignment 2 (Resolution)

(8 + 6 = 14 points)

Let $\Sigma = (\{f/1, g/1, h/1, b/0, c/0\}, \{P/2, Q/1, R/2\});$ let N be the following set of clauses over Σ :

$$P(g(x), x) \lor P(b, x) \lor R(f(x), x) \tag{1}$$

 $\neg P(g(x), g(x)) \tag{2}$

 $\neg P(z, h(y)) \lor \neg R(y, z) \tag{3}$

$$\neg P(y,c) \lor \neg P(z,b) \lor \neg Q(z) \lor R(z,y)$$
(4)

 $Q(b) \lor Q(x) \lor \neg R(f(x), x) \tag{5}$

Part (a) Suppose that the atom ordering \succ is a lexicographic path ordering with the precedence P > Q > R > f > g > h > b > c and that the selection function *sel* selects no literals. Compute all $\operatorname{Res}_{sel}^{\succ}$ inferences between the clauses (1)–(5). (Do not compute inferences between derived clauses. Do not compute any inferences that violate the restrictions of the calculus.)

Part (b) If the selection function *sel* is defined appropriately, the set N is saturated under $\operatorname{Res}_{sel}^{\succ}$ (with \succ as in Part (a)). Which literals have to be selected?

Assignment 3 (E-Algebras)

(12 points)

Let $\Sigma = (\Omega, \emptyset)$ be a first-order signature with $\Omega = \{f/2, b/0, c/0, d/0\}$. Let E be the set of Σ -equations

$$\{ \forall x \, (f(x,c) \approx b), \ c \approx d \},\$$

let $X = \{x, y, z\}$ be a set of variables. For any $t \in T_{\Sigma}(X)$ let [t] denote the congruence class of t w.r.t. E. Let $\mathcal{T} = T_{\Sigma}(X)/E$ and let $\beta : X \to U_{\mathcal{T}}$ be the assignment that maps every variable to [c]. Decide for each of the following statements whether they are true or false:

- (1) [c] is a finite set of Σ -terms. (5) $f(c,b) \in [f(d,b)]$.
- (2) [f(c,c)] is a set of ground Σ -terms. (6) $f_{\mathcal{T}}([y],[d]) = [f(z,c)].$
- (3) [x] is an element of the universe of \mathcal{T} . (7) $\mathcal{T}(\beta)(y \approx d) = 1$.
- (4) $\{b, f(x, c)\}$ is a congruence class w.r.t. E. (8) $\mathcal{T}(\beta)(\forall z \, (z \approx c)) = 1.$

(Note on grading: A yes/no answer is sufficient; you do not have to give any explanations. However, you need at least five correct answers to get any points for assignment 3. Missing answers count like false answers.)

Assignment 4 (Rewriting)

(12 points)

(12 points)

Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{f/1, g/1, h/1, b/0, c/0\}$. Let R be the following term rewrite system over Σ :

$$\{g(f(x)) \to h(x), \ h(f(x)) \to g(x), \ g(b) \to c, \ h(c) \to b\}$$

Prove: If $s, t \in T_{\Sigma}(X)$ and $R \models \forall \vec{x} (s \approx t)$, then there exists a rewrite derivation $s \leftrightarrow_R^* t$ with at most |s| + |t| - 2 rewrite steps.

Assignment 5 (Reduction Orderings)

Let $\Sigma = (\Omega, \emptyset)$ be a finite signature. For $t \in T_{\Sigma}(X)$ we define depth $(t) = \max\{|p| \mid p \in \text{pos}(t)\}$. Let \succ be a strict partial ordering on Ω . The binary relation \succ_{do} on $T_{\Sigma}(X)$ is defined by: $s \succ_{\text{do}} t$ if and only if

- (1) $\#(x,s) \ge \#(x,t)$ for all variables x and depth(s) > depth(t), or
- (2) $\#(x,s) \ge \#(x,t)$ for all variables x, depth(s) = depth(t), and

(a)
$$s = f(s_1, ..., s_m), t = g(t_1, ..., t_n)$$
, and $f \succ g$, or
(b) $s = f(s_1, ..., s_m), t = f(t_1, ..., t_m)$, and
 $(s_1, ..., s_m) (\succ_{do})_{lex} (t_1, ..., t_m)$.

Give an example that shows that $>_{do}$ is *not* a reduction ordering.

Assignment 6 (Dependency Pairs) (4 + 8 + 4 = 16 points)Part (a) Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{f/2, g/2, h/1, k/1, b/0\}$. Compute the dependency pairs of the following rewrite system R over Σ :

$f(x,h(x)) \to h(k(x))$	(1)
$f(h(x),y) \to g(x,g(h(x),x))$	(2)
$g(x,x) \to f(x,x)$	(3)
g(x,y) o y	(4)
h(b) o b	(5)

Part (b) Compute the approximated dependency graph for R (using cap and ren) and use the subterm criterion to show that R is terminating. If a graph is modified, depict both the original and the modified graph and indicate the strongly connected components in the graphs.

Part (c) The approximated dependency graph contains an edge from a dependency pair generated by rule (3) to a dependency pair generated by rule (1). Is this edge also contained in the exact dependency graph? Give an explanation.