
Assignment 1 (Semantics of FOL) (14 points)

Let Σ = (Ω,Π) be a signature. For every Σ-formula F without equality
let neg(F) be the formula that one obtains from F by replacing every atom
P (t1, . . . , tn) in F by its negation ¬P (t1, . . . , tn) for every P/n ∈ Π. Prove: If
F is valid, then neg(F) is valid.

(Note: Somewhere in the proof you need an induction over the structure of
formulas. It is sufficient if you check the base cases and ∧, ¬, and ∃. The other
boolean connectives and quantifiers (∨, →, ↔, ∀) can be handled analogously;
you may omit them.)

Assignment 2 (Resolution) (8 + 6 = 14 points)

Let Σ = ({f/1, g/1, h/1, b/0, c/0}, {P/2, Q/1, R/2}); let N be the following
set of clauses over Σ:

P (g(x), x) ∨ P (b, x) ∨R(f(x), x) (1)

¬P (g(x), g(x)) (2)

¬P (z, h(y)) ∨ ¬R(y, z) (3)

¬P (y, c) ∨ ¬P (z, b) ∨ ¬Q(z) ∨R(z, y) (4)

Q(b) ∨Q(x) ∨ ¬R(f(x), x) (5)

Part (a) Suppose that the atom ordering ≻ is a lexicographic path ordering
with the precedence P > Q > R > f > g > h > b > c and that the selection
function sel selects no literals. Compute all Res≻

sel
inferences between the

clauses (1)–(5). (Do not compute inferences between derived clauses. Do not
compute any inferences that violate the restrictions of the calculus.)

Part (b) If the selection function sel is defined appropriately, the set N is
saturated under Res≻

sel
(with ≻ as in Part (a)). Which literals have to be

selected?

Assignment 3 (E-Algebras) (12 points)

Let Σ = (Ω, ∅) be a first-order signature with Ω = {f/2, b/0, c/0, d/0}. Let
E be the set of Σ-equations

{ ∀x (f(x, c) ≈ b), c ≈ d },

let X = {x, y, z} be a set of variables. For any t ∈ TΣ(X) let [t] denote the
congruence class of t w.r.t. E. Let T = TΣ(X)/E and let β : X → UT be the
assignment that maps every variable to [c]. Decide for each of the following
statements whether they are true or false:

(1) [c] is a finite set of Σ-terms.

(2) [f(c, c)] is a set of ground Σ-terms.

(3) [x] is an element of the universe of T .

(4) {b, f(x, c)} is a congruence class w.r.t. E.

(5) f(c, b) ∈ [f(d, b)].

(6) fT ([y], [d]) = [f(z, c)].

(7) T (β)(y ≈ d) = 1.

(8) T (β)(∀z (z ≈ c)) = 1.

1

(Note on grading: A yes/no answer is sufficient; you do not have to give any
explanations. However, you need at least five correct answers to get any points
for assignment 3. Missing answers count like false answers.)

Assignment 4 (Rewriting) (12 points)

Let Σ = (Ω, ∅) with Ω = {f/1, g/1, h/1, b/0, c/0}. Let R be the following term
rewrite system over Σ:

{ g(f(x)) → h(x), h(f(x)) → g(x), g(b) → c, h(c) → b }

Prove: If s, t ∈ TΣ(X) and R |= ∀~x (s ≈ t), then there exists a rewrite
derivation s ↔∗

R
t with at most |s|+ |t| − 2 rewrite steps.

Assignment 5 (Reduction Orderings) (12 points)

Let Σ = (Ω, ∅) be a finite signature. For t ∈ TΣ(X) we define depth(t) =
max{ |p| | p ∈ pos(t) }. Let ≻ be a strict partial ordering on Ω. The binary
relation ≻do on TΣ(X) is defined by: s ≻do t if and only if

(1) #(x, s) ≥ #(x, t) for all variables x and depth(s) > depth(t), or

(2) #(x, s) ≥ #(x, t) for all variables x, depth(s) = depth(t), and

(a) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g, or

(b) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and
(s1, . . . , sm) (≻do)lex (t1, . . . , tm).

Give an example that shows that >do is not a reduction ordering.

Assignment 6 (Dependency Pairs) (4 + 8 + 4 = 16 points)

Part (a) Let Σ = (Ω, ∅) with Ω = {f/2, g/2, h/1, k/1, b/0}. Compute the
dependency pairs of the following rewrite system R over Σ:

f(x, h(x)) → h(k(x)) (1)

f(h(x), y) → g(x, g(h(x), x)) (2)

g(x, x) → f(x, x) (3)

g(x, y) → y (4)

h(b) → b (5)

Part (b) Compute the approximated dependency graph for R (using cap and
ren) and use the subterm criterion to show that R is terminating. If a graph
is modified, depict both the original and the modified graph and indicate the
strongly connected components in the graphs.

Part (c) The approximated dependency graph contains an edge from a de-
pendency pair generated by rule (3) to a dependency pair generated by rule
(1). Is this edge also contained in the exact dependency graph? Give an
explanation.

2

