Let $\Sigma=(\Omega, \Pi)$ be a signature. For every Σ-formula F without equality let $\operatorname{neg}(F)$ be the formula that one obtains from F by replacing every atom $P\left(t_{1}, \ldots, t_{n}\right)$ in F by its negation $\neg P\left(t_{1}, \ldots, t_{n}\right)$ for every $P / n \in \Pi$. Prove: If F is valid, then $\operatorname{neg}(F)$ is valid.
(Note: Somewhere in the proof you need an induction over the structure of formulas. It is sufficient if you check the base cases and \wedge, \neg, and \exists. The other boolean connectives and quantifiers $(\vee, \rightarrow, \leftrightarrow, \forall)$ can be handled analogously; you may omit them.)

Assignment 2 (Resolution)
Let $\Sigma=(\{f / 1, g / 1, h / 1, b / 0, c / 0\},\{P / 2, Q / 1, R / 2\})$; let N be the following set of clauses over Σ :

$$
\begin{align*}
& P(g(x), x) \vee P(b, x) \vee R(f(x), x) \tag{1}\\
& \neg P(g(x), g(x)) \tag{2}\\
& \neg P(z, h(y)) \vee \neg R(y, z) \tag{3}\\
& \neg P(y, c) \vee \neg P(z, b) \vee \neg Q(z) \vee R(z, y) \tag{4}\\
& Q(b) \vee Q(x) \vee \neg R(f(x), x) \tag{5}
\end{align*}
$$

Part (a) Suppose that the atom ordering \succ is a lexicographic path ordering with the precedence $P>Q>R>f>g>h>b>c$ and that the selection function sel selects no literals. Compute all Res $\underset{\text { sel }}{\succ}$ inferences between the clauses (1)-(5). (Do not compute inferences between derived clauses. Do not compute any inferences that violate the restrictions of the calculus.)

Part (b) If the selection function sel is defined appropriately, the set N is saturated under $\operatorname{Res}_{\text {sel }}^{\succ}$ (with \succ as in Part (a)). Which literals have to be selected?

Assignment 3 (E-Algebras)

Let $\Sigma=(\Omega, \emptyset)$ be a first-order signature with $\Omega=\{f / 2, b / 0, c / 0, d / 0\}$. Let E be the set of Σ-equations

$$
\{\forall x(f(x, c) \approx b), c \approx d\}
$$

let $X=\{x, y, z\}$ be a set of variables. For any $t \in \mathrm{~T}_{\Sigma}(X)$ let $[t]$ denote the congruence class of t w.r.t. E. Let $\mathcal{T}=\mathrm{T}_{\Sigma}(X) / E$ and let $\beta: X \rightarrow U_{\mathcal{T}}$ be the assignment that maps every variable to $[c]$. Decide for each of the following statements whether they are true or false:
(1) $[c]$ is a finite set of Σ-terms.
(5) $f(c, b) \in[f(d, b)]$.
(2) $[f(c, c)]$ is a set of ground Σ-terms.
(6) $f_{\mathcal{T}}([y],[d])=[f(z, c)]$.
(3) $[x]$ is an element of the universe of \mathcal{T}.
(7) $\mathcal{T}(\beta)(y \approx d)=1$.
(4) $\{b, f(x, c)\}$ is a congruence class w.r.t. E.
(8) $\mathcal{T}(\beta)(\forall z(z \approx c))=1$.
(Note on grading: A yes/no answer is sufficient; you do not have to give any explanations. However, you need at least five correct answers to get any points for assignment 3. Missing answers count like false answers.)

Assignment 4 (Rewriting)
Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{f / 1, g / 1, h / 1, b / 0, c / 0\}$. Let R be the following term rewrite system over Σ :

$$
\{g(f(x)) \rightarrow h(x), h(f(x)) \rightarrow g(x), g(b) \rightarrow c, h(c) \rightarrow b\}
$$

Prove: If $s, t \in \mathrm{~T}_{\Sigma}(X)$ and $R \models \forall \vec{x}(s \approx t)$, then there exists a rewrite derivation $s \leftrightarrow_{R}^{*} t$ with at most $|s|+|t|-2$ rewrite steps.

Assignment 5 (Reduction Orderings)

Let $\Sigma=(\Omega, \emptyset)$ be a finite signature. For $t \in \mathrm{~T}_{\Sigma}(X)$ we define $\operatorname{depth}(t)=$ $\max \{|p| \mid p \in \operatorname{pos}(t)\}$. Let \succ be a strict partial ordering on Ω. The binary relation $\succ_{\text {do }}$ on $\mathrm{T}_{\Sigma}(X)$ is defined by: $s \succ_{\text {do }} t$ if and only if
(1) $\#(x, s) \geq \#(x, t)$ for all variables x and $\operatorname{depth}(s)>\operatorname{depth}(t)$, or
(2) $\#(x, s) \geq \#(x, t)$ for all variables x, $\operatorname{depth}(s)=\operatorname{depth}(t)$, and
(a) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and $f \succ g$, or
(b) $s=f\left(s_{1}, \ldots, s_{m}\right), t=f\left(t_{1}, \ldots, t_{m}\right)$, and

$$
\left(s_{1}, \ldots, s_{m}\right)\left(\succ_{\text {do }}\right)_{\text {lex }}\left(t_{1}, \ldots, t_{m}\right) .
$$

Give an example that shows that $>_{\text {do }}$ is not a reduction ordering.

Assignment 6 (Dependency Pairs) ($4+8+4=16$ points)
Part (a) Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{f / 2, g / 2, h / 1, k / 1, b / 0\}$. Compute the dependency pairs of the following rewrite system R over Σ :

$$
\begin{align*}
f(x, h(x)) & \rightarrow h(k(x)) \tag{1}\\
f(h(x), y) & \rightarrow g(x, g(h(x), x)) \tag{2}\\
g(x, x) & \rightarrow f(x, x) \tag{3}\\
g(x, y) & \rightarrow y \tag{4}\\
h(b) & \rightarrow b \tag{5}
\end{align*}
$$

Part (b) Compute the approximated dependency graph for R (using cap and ren) and use the subterm criterion to show that R is terminating. If a graph is modified, depict both the original and the modified graph and indicate the strongly connected components in the graphs.
Part (c) The approximated dependency graph contains an edge from a dependency pair generated by rule (3) to a dependency pair generated by rule (1). Is this edge also contained in the exact dependency graph? Give an explanation.

