Prove: If S and S^{\prime} are finite multisets over a set M, and $S \succ_{\text {mul }} S^{\prime}$ holds for every strict partial ordering \succ over M, then $S^{\prime} \subset S$ (that is, $S^{\prime} \subseteq S$ and $\left.S^{\prime} \neq S\right)$.

Assignment 2 (Propositional Logic)

$$
(6+6+6=18 \text { points })
$$

Let F, G, H be propositional formulas, let p be a position of H.
Part (a)
Prove or refute: If $H[F]_{p}$ is valid and $H[G]_{p}$ is valid, then $H[F \vee G]_{p}$ is valid.
Part (b)
Prove or refute: If $H[F \wedge G]_{p}$ is valid, then $H[F]_{p}$ and $H[G]_{p}$ are valid.

Part (c)

Prove or refute: If $H[F]_{p}$ is valid and $\operatorname{pol}(H, p)=-1$, then $H[F \wedge G]_{p}$ is valid.

Assignment 3 ($C D C L$)
 $$
(6+10=16 \text { points })
$$

Let N be the following set of propositional clauses:

P			\checkmark	R					V	U	V	$\neg V$
P	V	Q	\checkmark	$\neg R$	V	S			V	U		
		Q			V	S					V	V
		Q							V	$\neg U$	\checkmark	$\neg V$
		Q					\checkmark	T	\checkmark	U		
						$\neg S$	V	$\neg T$				
						$\neg S$			V	$\neg U$		
$\neg P$	V	$\neg Q$			V	S						

Part (a)

Use the CDCL procedure to compute a (total) model of N.
Part (b)
Use the CDCL procedure to prove that $N \models P \vee Q$.

For both parts: Use the CDCL inference rules with a reasonable strategy. If you use the Decide rule, use the largest undefined positive literal according to the ordering $P>Q>R>S>T>U>V$. If you use the Backjump rule, determine a suitable backjump clause using the 1UIP method and use the best possible successor state for that backjump clause.

Assignment 4 (Propositional Logic, Orderings) $\quad(6+6+6=18$ points)
Let Π be a set of propositional variables. We define the relation \succ on propositional formulas over Π by

$$
F \succ G \quad \text { if and only if } \quad F \models G \text { and not } G \models F
$$

Part (a)

Prove: \succ is a strict partial ordering.
Part (b)
Prove: If Π is finite, then \succ is well-founded.
Part (c)
Give an example that demonstrates that \succ is not well-founded if Π is infinite.

Assignment 5 (First-order Logic)

Let $\Sigma=(\{b / 0, c / 0, d / 0, f / 1\},\{P / 1\})$. Does the formula

$$
P(b) \wedge P(c) \wedge \neg P(d) \wedge \neg \exists x P(f(f(x)))
$$

have a Σ-model whose universe has exactly two elements? Give an example of such a model or show that such a model does not exist.

Assignment 6 (First-order Logic, CNF Transformation)

Let $\Sigma=(\{b / 0\},\{P / 1, Q / 2, R / 2\})$. Transform the Σ-formula

$$
F=\forall x \exists y((P(b) \vee \forall z Q(y, z)) \rightarrow R(x, y))
$$

into clause normal form using the improved algorithm from Section 3.6. (There are no subformulas in F for which one should introduce a definition.)

