Assignment 1 (Multisets)

(8 points)

Prove: If S and S' are finite multisets over a set M, and $S \succ_{\text{mul}} S'$ holds for *every* strict partial ordering \succ over M, then $S' \subset S$ (that is, $S' \subseteq S$ and $S' \neq S$).

Assignment 2 (Propositional Logic) (6 + 6 + 6 = 18 points)

Let F, G, H be propositional formulas, let p be a position of H.

Part (a)

Prove or refute: If $H[F]_p$ is valid and $H[G]_p$ is valid, then $H[F \vee G]_p$ is valid. Part (b)

Prove or refute: If $H[F \wedge G]_p$ is valid, then $H[F]_p$ and $H[G]_p$ are valid.

Part (c)

Prove or refute: If $H[F]_p$ is valid and pol(H, p) = -1, then $H[F \wedge G]_p$ is valid.

Assignment 3 (CDCL) (6 + 10 = 16 points)

Let N be the following set of propositional clauses:

P			\vee	R					\vee	U	\vee	$\neg V$	(1)
P	V	Q	V	$\neg R$	\vee	S			V	U			(2)
		Q			\vee	S					V	V	(3)
		Q							V	$\neg U$	V	$\neg V$	(4)
		Q					\vee	T	V	U			(5)
						$\neg S$	\vee	$\neg T$					(6)
						$\neg S$			V	$\neg U$			(7)
$\neg P$	\vee	$\neg Q$			V	S							(8)

Part (a)

Use the CDCL procedure to compute a (total) model of N.

Part (b)

Use the CDCL procedure to prove that $N \models P \lor Q$.

For both parts: Use the CDCL inference rules with a reasonable strategy. If you use the *Decide* rule, use the largest undefined positive literal according to the ordering P > Q > R > S > T > U > V. If you use the *Backjump* rule, determine a suitable backjump clause using the 1UIP method and use the best possible successor state for that backjump clause. Assignment 4 (Propositional Logic, Orderings) (6 + 6 + 6 = 18 points)Let Π be a set of propositional variables. We define the relation \succ on propositional formulas over Π by

 $F \succ G$ if and only if $F \models G$ and not $G \models F$

Part (a)

Prove: \succ is a strict partial ordering.

Part (b)

Prove: If Π is finite, then \succ is well-founded.

Part (c)

Give an example that demonstrates that \succ is not well-founded if Π is infinite.

Assignment 5 (First-order Logic) (10 points)

Let $\Sigma = (\{b/0, c/0, d/0, f/1\}, \{P/1\})$. Does the formula

$$P(b) \land P(c) \land \neg P(d) \land \neg \exists x \, P(f(f(x)))$$

have a Σ -model whose universe has exactly two elements? Give an example of such a model or show that such a model does not exist.

Assignment 6 (First-order Logic, CNF Transformation) (10 points) Let $\Sigma = (\{b/0\}, \{P/1, Q/2, R/2\})$. Transform the Σ -formula

$$F = \forall x \exists y \left(\left(P(b) \lor \forall z Q(y, z) \right) \to R(x, y) \right)$$

into clause normal form using the improved algorithm from Section 3.6. (There are no subformulas in F for which one should introduce a definition.)