
Note: compatible with Σ-operations = compatible with contexts.

A binary relation ⊐ over TΣ(X) is called stable under substitutions, if s ⊐ s′ implies
sσ ⊐ s′σ for all s, s′ ∈ TΣ(X) and substitutions σ.

A binary relation ⊐ is called a rewrite relation, if it is compatible with Σ-operations and
stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X) that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Theorem 4.19 A TRS R terminates if and only if there exists a reduction ordering ≻
such that l ≻ r for every rule l → r ∈ R.

Proof. “if”: s →R s′ if and only if s = t[lσ]p, s
′ = t[rσ]p. If l ≻ r, then lσ ≻ rσ and

therefore t[lσ]p ≻ t[rσ]p. This implies →R ⊆ ≻. Since ≻ is a well-founded ordering, →R

is terminating.

“only if”: Define ≻ =→+
R. If →R is terminating, then ≻ is a reduction ordering. ✷

The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Define the ordering ≻A over TΣ(X) by s ≻A t iffA(β)(s) ≻ A(β)(t) for all assignments
β : X → UA.

Is ≻A a reduction ordering?

Lemma 4.20 ≻A is stable under substitutions.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all assignments β : X → UA. Let
σ be a substitution. We have to show that A(γ)(sσ) ≻ A(γ)(s′σ) for all assignments
γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma, A(γ)(sσ) = A(β)(s) ≻
A(β)(s′) = A(γ)(s′σ). Therefore sσ ≻A s′σ. ✷

A function f : Un
A → UA is called monotone (with respect to ≻), if a ≻ a′ implies

f(b1, . . . , a, . . . , bn) ≻ f(b1, . . . , a
′, . . . , bn) for all a, a

′, bi ∈ UA.

Lemma 4.21 If the interpretation fA of every function symbol f is monotone w. r. t. ≻,
then ≻A is compatible with Σ-operations.

105

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all β : X → UA. Let β : X → UA

be an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))

≻ fA(A(β)(t1), . . . ,A(β)(s
′), . . . ,A(β)(tn))

= A(β)(f(t1, . . . , s
′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) ≻A f(t1, . . . , s
′, . . . , tn). ✷

Theorem 4.22 If the interpretation fA of every function symbol f is monotone w. r. t.≻,
then ≻A is a reduction ordering.

Proof. By the previous two lemmas, ≻A is a rewrite relation. If there were an infinite
chain s1 ≻A s2 ≻A . . . , then it would correspond to an infinite chain A(β)(s1) ≻
A(β)(s2) ≻ . . . (with β chosen arbitrarily). Thus ≻A is well-founded. Irreflexivity and
transitivity are proved similarly. ✷

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is N or some subset of N.

To every function symbol f/n we associate a polynomial Pf (X1, . . . , Xn) ∈ N[X1, . . . , Xn]
with coefficients in N and indeterminates X1, . . . , Xn. Then we define fA(a1, . . . , an) =
Pf(a1, . . . , an) for ai ∈ UA.

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise, A would not be a Σ-
algebra.)

Requirement 2:

fA must be monotone (w. r. t. ≻).

From now on:

UA = {n ∈ N | n ≥ 1 }.

If arity(f) = 0, then Pf is a constant ≥ 1.

If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn), such that every Xi occurs
in some monomial m · Xj1

1 · · ·X
jk
k with exponent at least 1 and non-zero coefficient

m ∈ N.

⇒ Requirements 1 and 2 are satisfied.

106

The mapping from function symbols to polynomials can be extended to terms: A
term t containing the variables x1, . . . , xn yields a polynomial Pt with indeterminates
X1, . . . , Xn (where Xi corresponds to β(xi)).

Example:

Ω = {b/0, f/1, g/3}
Pb = 3, Pf (X1) = X2

1 , Pg(X1, X2, X3) = X1 +X2X3.

Let t = g(f(b), f(x), y), then Pt(X, Y) = 9 +X2Y .

If P,Q are polynomials in N[X1, . . . , Xn], we write P > Q if P (a1, . . . , an) > Q(a1, . . . , an)
for all a1, . . . , an ∈ UA.

Clearly, s ≻A t iff Ps > Pt iff Ps − Pt > 0.

Question: Can we check Ps − Pt > 0 automatically?

Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . , Xn] with integer coefficients, is P = 0 for some
n-tuple of natural numbers?

Theorem 4.23 Hilbert’s 10th Problem is undecidable.

Proposition 4.24 Given a polynomial interpretation and two terms s, t, it is undecid-
able whether Ps > Pt.

Proof. By reduction of Hilbert’s 10th Problem. ✷

One easy case:

If we restrict to linear polynomials, deciding whether Ps − Pt > 0 is trivial:
∑

kiai + k > 0 for all a1, . . . , an ≥ 1 if and only if

ki ≥ 0 for all i ∈ {1, . . . , n},

and
∑

ki + k > 0

Another possible solution:

Test whether Ps(a1, . . . , an) > Pt(a1, . . . , an) for all a1, . . . , an ∈ { x ∈ R | x ≥ 1 }.

This is decidable (but hard). Since UA ⊆ { x ∈ R | x ≥ 1 }, it implies Ps > Pt.

Alternatively:

Use fast overapproximations.

107

Simplification Orderings

The proper subterm ordering ⊲ is defined by s ⊲ t if and only if s|p = t for some position
p 6= ε of s.

A rewrite ordering ≻ over TΣ(X) is called simplification ordering, if it has the subterm
property: s ⊲ t implies s ≻ t for all s, t ∈ TΣ(X).

Example:

Let Remb be the rewrite system Remb = { f(x1, . . . , xn)→ xi | f/n ∈ Ω, 1 ≤ i ≤ n }.

Define ⊲emb =→+
Remb

and Demb =→∗
Remb

(“homeomorphic embedding relation”).

⊲emb is a simplification ordering.

Lemma 4.25 If ≻ is a simplification ordering, then s ⊲emb t implies s ≻ t and s Demb t
implies s � t.

Proof. Since ≻ is transitive and � is transitive and reflexive, it suffices to show that
s →Remb

t implies s ≻ t. By definition, s →Remb
t if and only if s = s[lσ] and t = s[rσ]

for some rule l → r ∈ Remb. Obviously, l ⊲ r for all rules in Remb, hence l ≻ r. Since ≻
is a rewrite relation, s = s[lσ] ≻ s[rσ] = t. ✷

Goal:

Show that every simplification ordering is well-founded (and therefore a reduction
ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification orderings and the
definition of embedding have to be modified.

Theorem 4.26 (“Kruskal’s Theorem”) Let Σ be a finite signature, let X be a finite
set of variables. Then for every infinite sequence t1, t2, t3, . . . there are indices j > i such
that tj Demb ti. (Demb is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, page 113–115. ✷

108

Theorem 4.27 (Dershowitz) If Σ is a finite signature, then every simplification or-
dering ≻ on TΣ(X) is well-founded (and therefore a reduction ordering).

Proof. Suppose that t1 ≻ t2 ≻ t3 ≻ . . . is an infinite descending chain.

First assume that there is an x ∈ var(ti+1) \ var(ti). Let σ = {x 7→ ti}, then ti+1σ D

xσ = ti and therefore ti = tiσ ≻ ti+1σ � ti, contradicting reflexivity.

Consequently, var(ti) ⊇ var(ti+1) and ti ∈ TΣ(V) for all i, where V is the finite set
var(t1). By Kruskal’s Theorem, there are i < j with ti Eemb tj . Hence ti � tj , contra-
dicting ti ≻ tj . ✷

There are reduction orderings that are not simplification orderings and terminating TRSs
that are not contained in any simplification ordering.

Example:

Let R = {f(f(x))→ f(g(f(x)))}.

R terminates and →+
R is therefore a reduction ordering.

Assume that →R were contained in a simplification ordering ≻. Then f(f(x)) →R

f(g(f(x))) implies f(f(x)) ≻ f(g(f(x))), and f(g(f(x))) Demb f(f(x)) implies f(g(f(x))) �
f(f(x)), hence f(f(x)) ≻ f(f(x)).

Path Orderings

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω.

The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t
iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

Lemma 4.28 s ≻lpo t implies var(s) ⊇ var(t).

Proof. By induction on |s|+ |t| and case analysis. ✷

109

Theorem 4.29 ≻lpo is a simplification ordering on TΣ(X).

Proof. Show transitivity, subterm property, stability under substitutions, compatibility
with Σ-operations, and irreflexivity, usually by induction on the sum of the term sizes
and case analysis. Details: Baader and Nipkow, page 119/120. ✷

Theorem 4.30 If the precedence ≻ is total, then the lexicographic path ordering ≻lpo

is total on ground terms, i. e., for all s, t ∈ TΣ(∅): s ≻lpo t ∨ t ≻lpo s ∨ s = t.

Proof. By induction on |s|+ |t| and case analysis. ✷

Recapitulation:

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”) on
Ω. The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t
iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

There are several possibilities to compare subterms in (2)(c):

• compare list of subterms lexicographically left-to-right (“lexicographic path order-
ing (lpo)”, Kamin and Lévy)

• compare list of subterms lexicographically right-to-left (or according to some per-
mutation π)

• compare multiset of subterms using the multiset extension (“multiset path ordering
(mpo)”, Dershowitz)

• to each function symbol f/n ∈ Ω with n ≥ 1 associate a status ∈ {mul} ∪ { lexπ |
π : {1, . . . , n} → {1, . . . , n} } and compare according to that status (“recursive
path ordering (rpo) with status”)

110

The Knuth-Bendix Ordering

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω, let w : Ω ∪ X → R

+
0 be a weight function, such that the following admissibility

conditions are satisfied:

w(x) = w0 ∈ R
+ for all variables x ∈ X ; w(c) ≥ w0 for all constants c ∈ Ω.

If w(f) = 0 for some f/1 ∈ Ω, then f ≻ g for all g/n ∈ Ω with f 6= g.

The weight function w can be extended to terms recursively:

w(f(t1, . . . , tn)) = w(f) +
∑

1≤i≤n

w(ti)

or alternatively

w(t) =
∑

x∈var(t)

w(x) ·#(x, t) +
∑

f∈Ω

w(f) ·#(f, t).

where #(a, t) is the number of occurrences of a in t.

The Knuth-Bendix ordering ≻kbo on TΣ(X) induced by ≻ and w is defined by: s ≻kbo t
iff

(1) #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

(2) #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) t = x, s = fn(x) for some n ≥ 1, or

(b) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g, or

(c) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm) (≻kbo)lex (t1, . . . , tm).

Theorem 4.31 The Knuth-Bendix ordering induced by ≻ and w is a simplification
ordering on TΣ(X).

Proof. Baader and Nipkow, pages 125–129. ✷

Remark

If Π 6= ∅, then all the term orderings described in this section can also be used to compare
non-equational atoms by treating predicate symbols like function symbols.

111

4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of
rewrite rules.
(If R is finite: decision procedure for E.)

Knuth-Bendix Completion: Idea

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way that →R ⊆ ≻ (i. e., l ≻ r
for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Note: Every critical pair 〈s, t〉 can be made joinable by adding s→ t or t→ s to R.

(Actually, we first add s ≈ t to E and later try to turn it into a rule that is contained
in ≻; this gives us some additional degree of freedom.)

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of
equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the input set and R = R0 is empty. At the end, E should
be empty; then R is the result.

For each step E,R ⊢ E ′, R′, the equational theories of E ∪R and E ′ ∪R′ agree: ≈E∪R =
≈E′∪R′ .

Notations:

The formula s
.

≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.

112

Orient:

E ∪ {s
.

≈ t}, R

E, R ∪ {s→ t}
if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i. e., neither s ≻ t nor t ≻ s.

Trivial equations cannot be oriented – but we don’t need them anyway:

Delete:

E ∪ {s ≈ s}, R

E, R

Critical pairs between rules in R are turned into additional equations:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R) then s←R u→R t and hence R |= s ≈ t.

The following inference rules are not absolutely necessary, but very useful (e. g., to get
rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.

≈ t}, R

E ∪ {u ≈ t}, R
if s→R u.

Simplification of the right-hand side of a rule is unproblematic:

R-Simplify-Rule:

E, R ∪ {s→ t}

E, R ∪ {s→ u}
if t→R u.

Simplification of the left-hand side may influence orientability and orientation. There-
fore, it yields an equation:

L-Simplify-Rule:

E, R ∪ {s→ t}

E ∪ {u ≈ t}, R

if s→R u using a rule l → r ∈ R
such that s ⊐ l (see below).

113

For technical reasons, the lhs of s → t may only be simplified using a rule l → r, if
l → r cannot be simplified using s → t, that is, if s ⊐ l, where the encompassment
quasi-ordering ⊐

∼ is defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.32 ⊐ is a well-founded strict partial ordering.

Lemma 4.33 If E,R ⊢ E ′, R′, then ≈E∪R = ≈E′∪R′ .

Lemma 4.34 If E,R ⊢ E ′, R′ and →R ⊆ ≻, then →R′ ⊆ ≻.

Note: Like in ordered resolution, simplification should be preferred to deduction:

• Simplify/delete whenever possible.

• Otherwise, orient an equation, if possible.

• Last resort: compute critical pairs.

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can hap-
pen:

(1) We reach a state where no more inference rules are applicable and E is not empty.
⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs between the rules in the
current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . with R0 = ∅ is called a run
of the completion procedure with input E0 and ≻.

For a run, E∞ =
⋃

i≥0Ei and R∞ =
⋃

i≥0Ri.

The sets of persistent equations or rules of the run are E∗ =
⋃

i≥0

⋂

j≥iEj and R∗ =
⋃

i≥0

⋂

j≥iRj .

Note: If the run is finite and ends with En, Rn, then E∗ = En and R∗ = Rn.

114

A run is called fair, if CP (R∗) ⊆ E∞ (i. e., if every critical pair between persisting rules
is computed at some step of the derivation).

Goal:

Show: If a run is fair and E∗ is empty, then R∗ is convergent and equivalent to E0.

In particular: If a run is fair and E∗ is empty, then ≈E0
= ≈E∞∪R∞

=↔∗
E∞∪R∞

= ↓R∗
.

General assumptions from now on:

E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . is a fair run.

R0 and E∗ are empty.

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn) such that s = s0, t = sn,
and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∞
si, or

(2) si−1 →R∞
si, or

(3) si−1 ←R∞
si.

The pairs (si−1, si) are called proof steps.

A proof is called a rewrite proof in R∗, if there is a k ∈ {0, . . . , n} such that si−1 →R∗
si

for 1 ≤ i ≤ k and si−1 ←R∗
si for k + 1 ≤ i ≤ n

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite
proof in R∗ there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R∗.

We associate a cost c(si−1, si) with every proof step as follows:

(1) If si−1 ↔E∞
si, then c(si−1, si) = ({si−1, si},−,−), where the first component is a

multiset of terms and − denotes an arbitrary (irrelevant) term.

(2) If si−1 →R∞
si using l → r, then c(si−1, si) = ({si−1}, l, si).

(3) If si−1 ←R∞
si using l → r, then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographic combination of the multiset extension
of the reduction ordering ≻, the encompassment ordering ⊐, and the reduction ordering
≻.

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering ≻C compares the costs of proofs using the multiset extension of the
proof step ordering.

115

Lemma 4.35 ≻C is a well-founded ordering.

Lemma 4.36 Let P be a proof in E∞ ∪ R∞. If P is not a rewrite proof in R∗, then
there exists an equivalent proof P ′ in E∞ ∪ R∞ such that P ≻C P ′.

Proof. If P is not a rewrite proof in R∗, then it contains

(a) a proof step that is in E∞, or
(b) a proof step that is in R∞ \R∗, or
(c) a subproof si−1 ←R∗

si →R∗
si+1 (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller
subproof:

Case (a): A proof step using an equation s
.

≈ t is in E∞. This equation must be deleted
during the run.

If s
.

≈ t is deleted using Orient:
. . . si−1 ↔E∞

si . . . =⇒ . . . si−1 →R∞
si . . .

If s
.

≈ t is deleted using Delete:
. . . si−1 ↔E∞

si−1 . . . =⇒ . . . si−1 . . .

If s
.

≈ t is deleted using Simplify-Eq:
. . . si−1 ↔E∞

si . . . =⇒ . . . si−1 →R∞
s′ ↔E∞

si . . .

Case (b): A proof step using a rule s → t is in R∞ \ R∗. This rule must be deleted
during the run.

If s→ t is deleted using R-Simplify-Rule:
. . . si−1 →R∞

si . . . =⇒ . . . si−1 →R∞
s′ ←R∞

si . . .

If s→ t is deleted using L-Simplify-Rule:
. . . si−1 →R∞

si . . . =⇒ . . . si−1 →R∞
s′ ↔E∞

si . . .

Case (c): A subproof has the form si−1 ←R∗
si →R∗

si+1.

If there is no overlap or a non-critical overlap:
. . . si−1 ←R∗

si →R∗
si+1 . . . =⇒ . . . si−1 →

∗
R∗

s′ ←∗
R∗

si+1 . . .

If there is a critical pair that has been added using Deduce:
. . . si−1 ←R∗

si →R∗
si+1 . . . =⇒ . . . si−1 ↔E∞

si+1 . . .

In all cases, checking that the replacement subproof is smaller than the replaced subproof
is routine. ✷

116

Theorem 4.37 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair run and let R0 and E∗ be
empty. Then

(1) every proof in E∞ ∪ R∞ is equivalent to a rewrite proof in R∗,

(2) R∗ is equivalent to E0, and

(3) R∗ is convergent.

Proof. (1) By well-founded induction on ≻C using the previous lemma.

(2) Clearly ≈E∞∪R∞
= ≈E0

. Since R∗ ⊆ R∞, we get ≈R∗
⊆ ≈E∞∪R∞

. On the other
hand, by (1), ≈E∞∪R∞

⊆ ≈R∗
.

(3) Since →R∗
⊆ ≻, R∗ is terminating. By (1), R∗ is confluent. ✷

4.7 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use orientable instances for rewriting.

Note: If ≻ is total on ground terms, then every ground instance of an equation is
trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

Let E be a set of equations, let ≻ be a reduction ordering.

We define the relation →E≻ by

s→E≻ t iff there exist (u ≈ v) ∈ E or (v ≈ u) ∈ E,
p ∈ pos(s), and σ : X → TΣ(X),
such that s|p = uσ and t = s[vσ]p and uσ ≻ vσ.

Note: →E≻ is terminating by construction.

From now on let ≻ be a reduction ordering that is total on ground terms.

E is called ground convergent w. r. t. ≻, if for all ground terms s and t with s ↔∗
E t

there exists a ground term v such that s→∗
E≻ v ←∗

E≻ t. (Analogously for E ∪R.)

As for standard completion, we establish ground convergence by computing critical
pairs.

117

However, the ordering ≻ is not total on non-ground terms. Since sθ ≻ tθ implies s 6� t,
we approximate ≻ on ground terms by 6� on arbitrary terms.

Let ui

.

≈ vi (i = 1, 2) be equations in E whose variables have been renamed such that
var(u1

.

≈ v1) ∩ var(u2
.

≈ v2) = ∅. Let p ∈ pos(u1) be a position such that u1|p is not a
variable, σ is an mgu of u1|p and u2, and uiσ 6� viσ (i = 1, 2). Then 〈v1σ, (u1σ)[v2σ]p〉 is
called a semi-critical pair of E with respect to ≻.

The set of all semi-critical pairs of E is denoted by SP≻(E).

Semi-critical pairs of E ∪ R are defined analogously. If →R ⊆ ≻, then CP(R) and
SP≻(R) agree.

Note: In contrast to critical pairs, it may be necessary to consider overlaps of a rule with
itself at the top. For instance, if E = {f(x) ≈ g(y)}, then 〈g(y), g(y′)〉 is a non-trivial
semi-critical pair.

The Deduce rule takes now the following form:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ SP≻(E ∪R).

Moreover, the fairness criterion for runs is replaced by

SP≻(E∗ ∪ R∗) ⊆ E∞

(i. e., if every semi-critical pair between persisting rules or equations is computed at
some step of the derivation).

Analogously to Thm. 4.37 we obtain now the following theorem:

Theorem 4.38 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair run; let R0 = ∅. Then

(1) E∗ ∪R∗ is equivalent to E0, and

(2) E∗ ∪R∗ is ground convergent.

Moreover one can show that, whenever there exists a reduced convergent R such that
≈E0

= ↓R and →R ∈ ≻, then for every fair and simplifying run E∗ = ∅ and R∗ = R up
to variable renaming.

Here R is called reduced, if for every l → r ∈ R, both l and r are irreducible w. r. t. R \
{l → r}. A run is called simplifying, if R∗ is reduced, and for all equations u ≈ v ∈ E∗,
u and v are incomparable w. r. t. ≻ and irreducible w. r. t. R∗.

Unfailing completion is refutationally complete for equational theories:

118

Theorem 4.39 Let E be a set of equations, let ≻ be a reduction ordering that is total
on ground terms. For any two terms s and t, let ŝ and t̂ be the terms obtained from s
and t by replacing all variables by Skolem constants. Let eq/2, true/0 and false/0 be
new operator symbols, such that true and false are smaller than all other terms. Let
E0 = E ∪ {eq(ŝ, t̂) ≈ true , eq(x, x) ≈ false}. If E0, ∅ ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair
run of unfailing completion, then s ≈E t iff some Ei ∪ Ri contains true ≈ false.

Outlook:

Combine ordered resolution and unfailing completion to get a calculus for equational
clauses:

compute inferences between (strictly) maximal literals as in ordered resolution,
compute overlaps between maximal sides of equations as in unfailing completion

⇒ Superposition calculus.

119

5 Termination Revisited

So far: Termination as a subordinate task for entailment checking.

TRS is generated by some saturation process; ordering must be chosen before the
saturation starts.

Now: Termination as a main task (e. g., for program analysis).

TRS is fixed and known in advance.

Literature:

Nao Hirokawa and Aart Middeldorp: Dependency Pairs Revisited, RTA 2004, pp. 249-
268 (in particular Sect. 1–4).

Thomas Arts and Jürgen Giesl: Termination of Term Rewriting Using Dependency
Pairs, Theoretical Computer Science, 236:133-178, 2000.

5.1 Dependency Pairs

Invented by T. Arts and J. Giesl in 1996, many refinements since then.

Given: finite TRS R over Σ = (Ω, ∅).

T0 := { t ∈ TΣ(X) | there is an infinite derivation t→R t1 →R t2 →R . . . }.

T∞ := { t ∈ T0 | ∀p > ε : t|p /∈ T0 } = minimal elements of T0 w. r. t. ⊲.

t ∈ T0 ⇒ there exists a t′ ∈ T∞ such that t D t′.

R is non-terminating iff T0 6= ∅ iff T∞ 6= ∅.

Assume that T∞ 6= ∅ and consider some non-terminating derivation starting from t ∈ T∞.
Since all subterms of t allow only finite derivations, at some point a rule l → r ∈ R must
be applied at the root of t (possibly preceded by rewrite steps below the root):

t = f(t1, . . . , tn)
>ε
−→∗

R f(s1, . . . , sn) = lσ
ε
−→R rσ.

In particular, root(t) = root(l), so we see that the root symbol of any term in T∞ must
be contained in D := { root(l) | l → r ∈ R }. D is called the set of defined symbols of R;
C := Ω \D is called the set of constructor symbols of R.

The term rσ is contained in T0, so there exists a v ∈ T∞ such that rσ D v.

If v occurred in rσ at or below a variable position of r, then xσ|p = v for some x ∈
var(r) ⊆ var(l), hence si D xσ and there would be an infinite derivation starting from
some ti. This contradicts t ∈ T∞, though.

120

Therefore, v = uσ for some non-variable subterm u of r. As v ∈ T∞, we see that
root(u) = root(v) ∈ D. Moreover, u cannot be a proper subterm of l, since otherwise
again there would be an infinite derivation starting from some ti.

Putting everything together, we obtain

t = f(t1, . . . , tn)
>ε
−→∗

R f(s1, . . . , sn) = lσ
ε
−→R rσ D uσ

where r D u, u is not a variable, root(u) ∈ D, l 6⊲ u.

Since uσ ∈ T∞, we can continue this process and obtain an infinite sequence.

If we define S := { l → u | l → r ∈ R, r D u, u /∈ X, root(u) ∈ D, l 6⊲ u }, we can
combine the rewrite step at the root and the subterm step and obtain

t
>ε
−→∗

R lσ
ε
−→S uσ.

To get rid of the superscripts ε and >ε, it turns out to be useful to introduce a new set
of function symbols f ♯ that are only used for the root symbols of this derivation:

Ω♯ := { f ♯/n | f/n ∈ Ω }.

For a term t = f(t1, . . . , tn) we define t♯ := f ♯(t1, . . . , tn); for a set of terms T we define
T ♯ := { t♯ | t ∈ T }.

The set of dependency pairs of a TRS R is then defined by

DP(R) := { l♯ → u♯ | l → r ∈ R, r D u, u /∈ X, root(u) ∈ D, l 6⊲ u }.

For t ∈ T∞, the sequence using the S-rule corresponds now to

t♯ →∗
R l♯σ →DP(R) u

♯σ

where t♯ ∈ T ♯
∞ and u♯σ ∈ T ♯

∞.

(Note that rules in R do not contain symbols from Ω♯, whereas all roots of terms in
DP(R) come from Ω♯, so rules from R can only be applied below the root and rules from
DP(R) can only be applied at the root.)

Since u♯σ is again in T ♯
∞, we can continue the process in the same way. We obtain: R is

non-terminating iff there is an infinite sequence

t1 →
∗
R t2 →DP(R) t3 →

∗
R t4 →DP(R) . . .

with ti ∈ T ♯
∞ for all i.

Moreover, if there exists such an infinite sequence, then there exists an infinite sequence
in which all DPs that are used are used infinitely often. (If some DP is used only finitely
often, we can cut off the initial part of the sequence up to the last occurrence of that
DP; the remainder is still an infinite sequence.)

121

Dependency Graphs

Such infinite sequences correspond to “cycles” in the “dependency graph”:

Dependency graph DG(R) of a TRS R:

directed graph

nodes: dependency pairs s→ t ∈ DP(R)

edges: from s→ t to u→ v if there are σ, τ such that tσ →∗
R uτ .

Intuitively, we draw an edge between two dependency pairs, if these two dependency
pairs can be used after another in an infinite sequence (with some R-steps in between).
While this relation is undecidable in general, there are reasonable overapproximations:

The functions cap and ren are defined by:

cap(x) = x

cap(f(t1, . . . , tn) =

{

y if f ∈ D

f(cap(t1), . . . , cap(tn)) if f ∈ C ∪D♯

ren(x) = y, y fresh
ren(f(t1, . . . , tn) = f(ren(t1), . . . , ren(tn))

The overapproximated dependency graph contains an edge from s → t to u → v if
ren(cap(t)) and u are unifiable.

A cycle in the dependency graph is a non-empty subset K ⊆ DP(R) such that there is
a non-empty path in K from every DP in K to every DP in K (the two DPs may be
identical).

Let K ⊆ DP(R). An infinite rewrite sequence in R ∪K of the form

t1 →
∗
R t2 →K t3 →

∗
R t4 →K . . .

with ti ∈ T ♯
∞ is called K-minimal, if all rules in K are used infinitely often.

R is non-terminating iff there is a cycle K ⊆ DP(R) and a K-minimal infinite rewrite
sequence.

5.2 Subterm Criterion

Our task is to show that there are no K-minimal infinite rewrite sequences.

Suppose that every dependency pair symbol f ♯ in K has positive arity (i. e., no con-
stants). A simple projection π is a mapping π : Ω♯ → N such that π(f ♯) = i ∈
{1, . . . , arity(f ♯)}.

We define π(f ♯(t1, . . . , tn)) = tπ(f♯).

122

Theorem 5.1 (Hirokawa and Middeldorp) Let K be a cycle in DG(R). If there is
a simple projection π for K such that π(l) D π(r) for every l → r ∈ K and π(l) ⊲ π(r)
for some l→ r ∈ K, then there are no K-minimal sequences.

Proof. Suppose that

t1 →
∗
R u1 →K t2 →

∗
R u2 →K . . .

is a K-minimal infinite rewrite sequence. Apply π to every ti:

Case 1: ui →K ti+1. There is an l → r ∈ K such that ui = lσ, ti+1 = rσ. Then
π(ui) = π(l)σ and π(ti+1) = π(r)σ. By assumption, π(l) D π(r). If π(l) = π(r), then
π(ui) = π(ti+1). If π(l) ⊲ π(r), then π(ui) = π(l)σ ⊲ π(r)σ = π(ti+1). In particular,
π(ui) ⊲ π(ti+1) for infinitely many i (since every DP is used infinitely often).

Case 2: ti →
∗
R ui. Then π(ti)→

∗
R π(ui).

By applying π to every term in the K-minimal infinite rewrite sequence, we obtain an
infinite (→R ∪⊲)-sequence containing infinitely many ⊲-steps. Since ⊲ is well-founded,
there must also exist infinitely many →R-steps (otherwise the infinite sequence would
have an infinite tail consisting only of ⊲-steps, contradicting well-foundedness.)

Now note that ⊲ ◦ →R ⊆ →R ◦ ⊲. Therefore we can commute ⊲-steps and →R-steps
and move all→R-steps to the front. We obtain an infinite→R-sequence that starts with
π(t1). However t1 ⊲ π(t1) and t1 ∈ T ♯

∞, so there cannot be an infinite →R-sequence
starting from π(t1). ✷

Problem: The number of cycles in DG(R) can be exponential.

Better method: Analyze strongly connected components (SCCs).

SCC of a graph: maximal subgraph in which there is a non-empty path from every node
to every node. (The two nodes can be identical.)3

Important property: Every cycle is contained in some SCC.

Idea: Search for a simple projection π such that π(l) D π(r) for all DPs l → r in the
SCC. Delete all DPs in the SCC for which π(l) ⊲ π(r) (by the previous theorem, there
cannot be any K-minimal infinite rewrite sequences using these DPs). Then re-compute
SCCs for the remaining graph and re-start.

No SCCs left ⇒ no cycles left ⇒ R is terminating.

Example: See Ex. 13 from Hirokawa and Middeldorp.

3There are several definitions of SCCs that differ in the treatment of edges from a node to itself.

123

5.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K-minimal infinite rewrite sequences

t1 →
∗
R u1 →K t2 →

∗
R u2 →K . . .

using well-founded orderings.

We observe that the requirements for the orderings used here are less restrictive than
for reduction orderings:

K-rules are only used at the top, so we need stability under substitutions, but com-
patibility with contexts is unnecessary.

While →K-steps should be decreasing, for →R-steps it would be sufficient to show
that they are not increasing.

This motivates the following definitions:

Rewrite quasi-ordering %:

reflexive and transitive binary relation, stable under substitutions, compatible with
contexts.

Reduction pair (%,≻):

% is a rewrite quasi-ordering.

≻ is a well-founded ordering that is stable under substitutions.

% and ≻ are compatible: % ◦ ≻ ⊆ ≻ or ≻ ◦% ⊆ ≻.

(In practice, ≻ is almost always the strict part of the quasi-ordering %.)

Clearly, for any reduction ordering ≻, (�,≻) is a reduction pair. More general reduction
pairs can be obtained using argument filterings:

Argument filtering π:

π : Ω ∪ Ω♯ → N ∪ list of N

π(f) =

{

i ∈ {1, . . . , arity(f)}, or

[i1, . . . , ik], where 1 ≤ i1 < · · · < ik ≤ arity(f), 0 ≤ k ≤ arity(f)

Extension to terms:

π(x) = x

π(f(t1, . . . , tn)) = π(ti), if π(f) = i

π(f(t1, . . . , tn)) = f ′(π(ti1), . . . , π(tik)), if π(f) = [i1, . . . , ik],
where f ′/k is a new function symbol.

124

Let ≻ be a reduction ordering, let π be an argument filtering. Define s ≻π t iff π(s) ≻
π(t) and s %π t iff π(s) � π(t).

Lemma 5.2 (%π,≻π) is a reduction pair.

Proof. Follows from the following two properties:

π(sσ) = π(s)σπ, where σπ is the substitution that maps x to π(σ(x)).

π(s[u]p) =

{

π(s), if p does not correspond to any position in π(s)

π(s)[π(u)]q, if p corresponds to q in π(s)
✷

For interpretation-based orderings (such as polynomial orderings) the idea of “cutting
out” certain subterms can be included directly in the definition of the ordering:

Reduction pairs by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Assume that all interpretations fA of function symbols are weakly monotone, i. e.,
ai � bi implies f(a1, . . . , , an) � f(b1, . . . , bn) for all ai, bi ∈ UA.

Define s %A t iff A(β)(s) � A(β)(t) for all assignments β : X → UA; define s ≻A t iff
A(β)(s) ≻ A(β)(t) for all assignments β : X → UA.

Then (%A,≻A) is a reduction pair.

For polynomial orderings, this definition permits interpretations of function symbols
where some variable does not occur at all (e. g., Pf(X, Y) = 2X + 1 for a binary function
symbol). It is no longer required that every variable must occur with some positive
coefficient.

Theorem 5.3 (Arts and Giesl) Let K be a cycle in the dependency graph of the
TRS R. If there is a reduction pair (%,≻) such that

• l % r for all l → r ∈ R,

• l % r or l ≻ r for all l → r ∈ K,

• l ≻ r for at least one l → r ∈ K,

then there is no K-minimal infinite sequence.

125

Proof. Assume that

t1 →
∗
R u1 →K t2 →

∗
R u2 →K . . .

is a K-minimal infinite rewrite sequence.

As l % r for all l → r ∈ R, we obtain ti % ui by stability under substitutions, compati-
bility with contexts, reflexivity and transitivity.

As l % r or l ≻ r for all l → r ∈ K, we obtain ui (% ∪ ≻) ti+1 by stability under
substitutions.

So we get an infinite (% ∪ ≻)-sequence containing infinitely many ≻-steps (since every
DP in K, in particular the one for which l ≻ r holds, is used infinitely often).

By compatibility of % and ≻, we can transform this into an infinite ≻-sequence, contra-
dicting well-foundedness. ✷

The idea can be extended to SCCs in the same way as for the subterm criterion:

Search for a reduction pair (%,≻) such that l % r for all l → r ∈ R and l % r or l ≻ r for
all DPs l → r in the SCC. Delete all DPs in the SCC for which l ≻ r. Then re-compute
SCCs for the remaining graph and re-start.

Example: Consider the following TRS R from [Arts and Giesl]:

minus(x, 0)→ x (1)

minus(s(x), s(y))→ minus(x, y) (2)

quot(0, s(y))→ 0 (3)

quot(s(x), s(y))→ s(quot(minus(x, y), s(y))) (4)

(R is not contained in any simplification ordering, since the left-hand side of rule (4) is
embedded in the right-hand side after instantiating y by s(x).)

R has three dependency pairs:

minus♯(s(x), s(y))→ minus♯(x, y) (5)

quot ♯(s(x), s(y))→ quot ♯(minus(x, y), s(y)) (6)

quot ♯(s(x), s(y))→ minus♯(x, y) (7)

The dependency graph of R is

(5) (7) (6)

126

There are exactly two SCCs (and also two cycles). The cycle at (5) can be handled using
the subterm criterion with π(minus♯) = 1. For the cycle at (6) we can use an argument
filtering π that mapsminus to 1 and leaves all other function symbols unchanged (that is,
π(g) = [1, . . . , arity(g)] for every g different from minus .) After applying the argument
filtering, we compare left and right-hand sides using an LPO with precedence quot > s
(the precedence of other symbols is irrelevant). We obtain l ≻ r for (6) and l % r for
(1), (2), (3), (4), so the previous theorem can be applied.

DP Processors

The methods described so far are particular cases of DP processors:

A DP processor

(G,R)

(G1, R1), . . . , (Gn, Rn)

takes a graph G and a TRS R as input and produces a set of pairs consisting of a graph
and a TRS.

It is sound and complete if there are K-minimal infinite sequences for G and R if and
only if there are K-minimal infinite sequences for at least one of the pairs (Gi, Ri).

Examples:

(G,R)

(SCC 1, R), . . . , (SCC n, R)

where SCC 1, . . . , SCC n are the strongly connected components of G.

(G,R)

(G \N,R)

if there is an SCC of G and a simple projection π such that π(l) D π(r) for all DPs
l → r in the SCC, and N is the set of DPs of the SCC for which π(l) ⊲ π(r).

(and analogously for reduction pairs)

Innermost Termination

The dependency method can also be used for proving termination of innermost rewriting:
s

i
−→R t if s →R t at position p and no rule of R can be applied at a position strictly

below p. (DP processors for innermost termination are more powerful than for ordinary
termination, and for program analysis, innermost termination is usually sufficient.)

127

6 Implementing Saturation Procedures

Problem:

Refutational completeness is nice in theory, but . . .

. . . it guarantees only that proofs will be found eventually, not that they will be found
quickly.

Even though orderings and selection functions reduce the number of possible infer-
ences, the search space problem is enormous.

First-order provers “look for a needle in a haystack”: It may be necessary to make
some millions of inferences to find a proof that is only a few dozens of steps long.

Coping with Large Sets of Formulas

Consequently:

• We must deal with large sets of formulas.

• We must use efficient techniques to find formulas that can be used as partners in
an inference.

• We must simplify/eliminate as many formulas as possible.

• Wemust use efficient techniques to check whether a formula can be simplified/elim-
inated.

Note:

Often there are several competing implementation techniques.

Design decisions are not independent of each other.

Design decisions are not independent of the particular class of problems we want to
solve. (FOL without equality/FOL with equality/unit equations, size of the signature,
special algebraic properties like AC, etc.)

128

6.1 Term Representations

The obvious data structure for terms: Trees

f(g(x1), f(g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

An alternative: Flatterms

f(g(x1), f(g(x1), x2))

f g x1 f g x1 x2

need more memory;
but: better suited for preorder term traversal and easier memory management.

129

6.2 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i. e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .

Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the requirements are different
(insertion and deletion are much less important).

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

Perfect filtering:

The indexing technique returns exactly those terms satisfying the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all terms satisfying the
query.

Retrieval operations must be followed by an additional check, but the index can often
be implemented more efficiently.

130

Frequently: All occurrences of variables are treated as different variables.

Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f(g(∗, b), ∗): f.1.g.1.∗
f.1.g.2.b
f.2.∗

Each leaf of the trie contains the set of (pointers to) all terms that contain the respec-
tive path.

Example: Path index for {f(g(d, ∗), c)}

{1}

{1} {1}

f
1 2

g
c

1 2

d ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗)}

{1}
{2}

{2} {1} {2} {1}

f
1 2

g
c
∗

1 2

∗ d b ∗

131

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c)}

{1, 3}
{2}

{2} {1, 3} {2, 3} {1}

f
1 2

g
c
∗

1 2

∗ d b ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b)}

{4}
{1, 3}

{2}

{2, 4}{1, 3} {2, 3}{4} {1}

f
1 2

g b
c
∗

1 2

∗ d b
c
∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b), f(∗, ∗)}

{5} {4}
{1, 3}

{2, 5}

{2, 4}{1, 3} {2, 3}{4} {1}

f
1 2

∗ g b
c
∗

1 2

∗ d b
c
∗

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances.

Disadvantages:

Retrieval requires combining intermediate results for subterms.

132

Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f(g(∗, b), ∗): f.g.∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is represented by the path.

Example: Discrimination tree for {f(g(d, ∗), c)}

{1}

f
g

d

∗

c

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗)}

{1} {2}

f
g

d ∗

∗ b

c ∗

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c)}

{3} {1} {2}

f
g

d ∗

b ∗ b

c c ∗

133

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b)}

{3} {1} {2} {4}

f
g

d ∗

b ∗ b c

c c ∗ b

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b),
f(∗, ∗)}

{5}

{3} {1} {2} {4}

f
g ∗

d ∗
∗

b ∗ b c

c c ∗ b

Advantages:

Each leaf yields one term, hence retrieval does not require intersections of intermediate
results for subterms.

Good for finding generalizations.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed up the search for instances
or unifiable terms.

Backtracking required for retrieval.

134

Feature Vector Indexing

Goal:

C ′ is subsumed by C if C ′ = Cσ ∨D.

Find all clauses C ′ for a given C or vice versa.

If C ′ is subsumed by C, then

• C ′ contains at least as many literals as C.

• C ′ contains at least as many positive literals as C.

• C ′ contains at least as many negative literals as C.

• C ′ contains at least as many function symbols as C.

• C ′ contains at least as many occurrences of f as C.

• C ′ contains at least as many occurrences of f in negative literals as C.

• the deepest occurrence of f in C ′ is at least as deep as in C.

• . . .

Idea:

Select a list of these “features”.

Compute the “feature vector” (a list of natural numbers) for each clause and store it
in a trie.

When searching for a subsuming clause: Traverse the trie, check all clauses for which
all features are smaller or equal. (Stop if a subsuming clause is found.)

When searching for subsumed clauses: Traverse the trie, check all clauses for which
all features are larger or equal.

Advantages:

Works on the clause level, rather than on the term level.

Specialized for subsumption testing.

Disadvantages:

Needs to be complemented by other index structure for other operations.

135

Literature

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov: Term Indexing, Ch. 26 in Robinson
and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

Stephan Schulz: Simple and Efficient Clause Subsumption with Feature Vector Indexing,
in Bonacina and Stickel (eds.), Automated Reasoning and Mathematics, LNCS 7788,
Springer, 2013.

Christoph Weidenbach: Combining Superposition, Sorts and Splitting, Ch. 27 in Robin-
son and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

7 Outlook

7.1 Satisfiability Modulo Theories (SMT)

DPLL checks satisfiability of propositional formulas.

DPLL can also be used for ground first-order formulas without equality:

Ground first-order atoms are treated like propositional variables.

Truth values of P (a), Q(a), Q(f(a)) are independent.

For ground formulas with equality, independence is lost:

If b ≈ c is true, then f(b) ≈ f(c) must also be true.

Similarly for other theories, e. g. linear arithmetic: b > 5 implies b > 3.

We can still use DPLL, but we must combine it with a decision procedure for the theory
part T :

M |=T C: M and the theory axioms T entail C.

New DPLL rules:

T -Propagate:

M ‖ N ⇒DPLL(T) M L ‖ N

if M |=T L where L is undefined in M and L or L occurs in N .

T -Learn:

M ‖ N ⇒DPLL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

136

T -Backjump:

M Ld M ′ ‖ N ∪ {C} ⇒DPLL(T) M L′ ‖ N ∪ {C}

if M Ld M ′ |= ¬C
and there is some “backjump clause” C ′ ∨ L′ such that
N ∪ {C} |=T C ′ ∨ L′ and M |= ¬C ′,
L′ is undefined under M , and
L′ or L′ occurs in N or in M Ld M ′.

7.2 Sorted Logics

So far, we have considered only unsorted first-order logic.

In practice, one often considers many-sorted logics:

read/2 becomes read : array × nat→ data.

write/3 becomes write : array × nat× data→ array.

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, natA.

Interpretations of function and predicate symbols correspond to their declarations:

readA : arrayA × natA → dataA

Proof theory, calculi, etc.:

Essentially as in the unsorted case.

More difficult:

Subsorts

Overloading

137

7.3 Splitting

Tableau-like rule within resolution to eliminate variable-disjoint (positive) disjunctions:

N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

if var(C1) ∩ var(C2) = ∅.

Split clauses are smaller and more likely to be usable for simplification.

Splitting tree is explored using intelligent backtracking.

7.4 Integrating Theories into Resolution

Certain kinds of axioms are

important in practice,

but difficult for theorem provers.

Most important case: equality

but also: orderings, (associativity and) commutativity, . . .

Idea: Combine ordered resolution and critical pair computation.

Superposition (ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Superposition (non-ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and u is not a variable.

Advantages:

No variable overlaps (as in KB-completion).

Stronger ordering restrictions:
Only overlaps of (strictly) maximal sides of (strictly) maximal literals are required.

Stronger redundancy criteria.

138

Similarly for orderings:

Ordered chaining:

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.

Integrating other theories:

Black box:

Use external decision procedure.

Easy, but works only under certain restrictions.

White box:

Integrate using specialized inference rules and theory unification.

Hard work.

Often: integrating more theory axioms is better.

139

