3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving can be obtained using
the following steps:

eliminate trivial subformulas

e replace beneficial subformulas

e produce a negation normal form (NNF)
e apply miniscoping

e rename all variables

e Skolemize

e push quantifiers upward

apply distributivity
We start with a closed formula.
Elimination of Trivial Subformulas

Eliminate subformulas T and L essentially as in the propositional case modulo associa-
tivity /commutativity of A, V:

H(FAT), =ocve H[F],
H[(FV 1)), =ocne H[F],
H[(FHJ—)]I) =" OCNF H[_‘F]p
H[(F < T)l, =ocve H[F],
H[(FV T, =ocne H[T],
H{(FA L), =ocve H[L],
H[=T], =ocne H[L],
H[~1], =ocne H[T],
H[(F — 1), =ocve H[-F],
H[(F = T)], =ocne H[T],
H[(L = F)], =ocve H[T],
H[{(T = F)], =ocne H[F],
H[Qz T], =ocxe H[T],
H[Qz 1], =ocny H[L],
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Replacement of Beneficial Subformulas

The functions v and v that give us an overapproximation for the number of clauses
generated by a formula are extended to quantified formulas by

v(Ve F) =v(3x F) = v(F),
v(Ve F) =v(3x F) = v(F).

The other cases are defined as for propositional formulas.

Introduce top-down fresh predicates for beneficial subformulas:
H[F]p = OCNF H[P(:L’l, . ,.T}n)]p A def(H,p, P, F)

if y(H[F],) > v(H[P(...)], Adef(H, p, P, F)),

where {z1,...,x,} are the free variables in F', P/n is a predicate new to H[F],, and

def(H, p, P, F) is defined by
Ve, ...,z (P(z1,...,2,) — F), if pol(H,p) =1,

Vo, ...,z (F— P(x,...,2,)), if pol(H,p) = —1,
Vo, ...,z (P(21,...,2,) < F), if pol(H,p) = 0.

As in the propositional case, one can test v(H[F],) > v(H[P], A def(H,p, P, F')) in
constant time without actually computing v.

Negation Normal Form (NNF)

Apply the reduction system =-nnr:

HIF & G, = HI(F = G)A (G — F)),
if pol(H, p) = 1 or pol(H,p) = 0.

HIF & G, =xw H(FAG)V (<G A-F)],
if pol(H,p) = —1.

H[F—)G]p =nnF H

lp =xne H

lp =~ H[-F A -G,
lp =wwr H|

H[-~Qz F], =wr H[O
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Miniscoping

Apply the reduction system =-\;g modulo associativity and commutativity of A, V. For
the rules below we assume that x occurs freely in F', F’, but x does not occur freely

in G:

Qr (FAG)|, =us H[(Qx F)NG],
Qz(FV @), =us H[(QxF)V{d],
)] (

)] (

[ [

[ [

Vo (FAF), =us H[(Yz F) A (Ve F')],
[
H|

iS]

[V
Be(FVF)), =us H[(E2F)V (3 F)),
Qz G, =wms H|[G],

T m R

Variable Renaming

Rename all variables in H such that there are no two different positions p, ¢ with H|, =

Qz F and H|, = Q'zG.

Standard Skolemization

Apply the reduction system:

H[3z Fl, =sx H[F{z — f(y1,- -, u)

where p has minimal length,
{y1,...,yn} are the free variables in Jx F,
and f/n is a new function symbol to H.

Final Steps

Apply the reduction system modulo commutativity of A, V to push V upward:

H[(Vz F)ANGl, =ocne H[Vz (FAG)],
H[(Vx F)V G], =ocxe H[Vz (FVG),

Note that variable renaming ensures that x does not occur in G.

Apply the reduction system modulo commutativity of A, V to push disjunctions down-
ward:

H[(FAF)VG], =cne HI(FVG)A(F'VG),
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3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that €2 contains at
least one constant symbol.

A Herbrand interpretation (over ¥) is a Y-algebra A such that

o U,y =Ty (= the set of ground terms over X)
o fa:i(st,...y8n) = f(s1,...,8n), f/neEQ

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m € Il may be freely interpreted as relations
Py CTE.

Proposition 3.10 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

(S1,...,8,) € Py iff P(s1,...,8,) €1

Thus we shall identify Herbrand interpretations (over ¥) with sets of ¥-ground atoms.

Existence of Herbrand Models

A Herbrand interpretation [ is called a Herbrand model of F'| if [ = F.

Theorem 3.11 (Herbrand) Let N be a set of (universally quantified) ¥-clauses.

N satisfiable < N has a Herbrand model (over %)
< Gx(N) has a Herbrand model (over X))

where Gx,(N) = { Co ground clause | (VZC) € N, 0 : X — Ty} is the set of ground
instances of N.

[The proof will be given below in the context of the completeness proof for general
resolution.]
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