3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving can be obtained using the following steps:

- eliminate trivial subformulas
- replace beneficial subformulas
- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- Skolemize
- push quantifiers upward
- apply distributivity

We start with a closed formula.

Elimination of Trivial Subformulas

Eliminate subformulas \top and \perp essentially as in the propositional case modulo associativity/commutativity of \land , \lor :

$$\begin{split} H[(F \wedge \top)]_p &\Rightarrow_{\text{OCNF}} H[F]_p \\ H[(F \vee \bot)]_p &\Rightarrow_{\text{OCNF}} H[F]_p \\ H[(F \leftrightarrow \bot)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \leftrightarrow \top)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \vee \top)]_p &\Rightarrow_{\text{OCNF}} H[\top]_p \\ H[(F \wedge \bot)]_p &\Rightarrow_{\text{OCNF}} H[\bot]_p \\ H[(\neg \top)]_p &\Rightarrow_{\text{OCNF}} H[\bot]_p \\ H[\neg \bot]_p &\Rightarrow_{\text{OCNF}} H[\bot]_p \\ H[(\neg \bot)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \rightarrow \bot)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \rightarrow \top)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \rightarrow \top)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(\bot \rightarrow F)]_p &\Rightarrow_{\text{OCNF}} H[\top]_p \\ H[(\top \rightarrow F)]_p &\Rightarrow_{\text{OCNF}} H[\top]_p \\ H[(\nabla \top F)]_p &\Rightarrow_{\text{OCNF}} H[\top]_p \\ H[Qx \top]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[Qx \bot]_p &\Rightarrow_{\text{OCNF}} H[\bot]_p \end{split}$$

Replacement of Beneficial Subformulas

The functions ν and $\bar{\nu}$ that give us an overapproximation for the number of clauses generated by a formula are extended to quantified formulas by

$$\begin{split} \nu(\forall x \ F) &= \nu(\exists x \ F) = \nu(F), \\ \bar{\nu}(\forall x \ F) &= \bar{\nu}(\exists x \ F) = \bar{\nu}(F). \end{split}$$

The other cases are defined as for propositional formulas.

Introduce top-down fresh predicates for beneficial subformulas:

$$H[F]_p \Rightarrow_{\text{OCNF}} H[P(x_1, \dots, x_n)]_p \wedge \det(H, p, P, F)$$

if $\nu(H[F]_p) > \nu(H[P(\ldots)]_p \wedge \operatorname{def}(H, p, P, F)),$

where $\{x_1, \ldots, x_n\}$ are the free variables in F, P/n is a predicate new to $H[F]_p$, and def(H, p, P, F) is defined by

$$\forall x_1, \dots, x_n \ (P(x_1, \dots, x_n) \to F), \text{ if } \operatorname{pol}(H, p) = 1, \\ \forall x_1, \dots, x_n \ (F \to P(x_1, \dots, x_n)), \text{ if } \operatorname{pol}(H, p) = -1, \\ \forall x_1, \dots, x_n \ (P(x_1, \dots, x_n) \leftrightarrow F), \text{ if } \operatorname{pol}(H, p) = 0.$$

As in the propositional case, one can test $\nu(H[F]_p) > \nu(H[P]_p \wedge def(H, p, P, F))$ in constant time without actually computing ν .

Negation Normal Form (NNF)

Apply the reduction system \Rightarrow_{NNF} :

$$H[F \leftrightarrow G]_p \Rightarrow_{\text{NNF}} H[(F \to G) \land (G \to F)]_p$$

if pol(H, p) = 1 or pol(H, p) = 0.

$$H[F \leftrightarrow G]_p \Rightarrow_{\text{NNF}} H[(F \land G) \lor (\neg G \land \neg F)]_p$$

if $\operatorname{pol}(H, p) = -1$.

$$\begin{split} H[F \to G]_p \ \Rightarrow_{\rm NNF} \ H[\neg F \lor G]_p \\ H[\neg \neg F]_p \ \Rightarrow_{\rm NNF} \ H[F]_p \\ H[\neg (F \lor G)]_p \ \Rightarrow_{\rm NNF} \ H[\neg F \land \neg G]_p \\ H[\neg (F \land G)]_p \ \Rightarrow_{\rm NNF} \ H[\neg F \lor \neg G]_p \\ H[\neg Qx \ F]_p \ \Rightarrow_{\rm NNF} \ H[\overline{Q}x \ \neg F]_p \end{split}$$

Miniscoping

Apply the reduction system \Rightarrow_{MS} modulo associativity and commutativity of \land , \lor . For the rules below we assume that x occurs freely in F, F', but x does not occur freely in G:

$$\begin{split} H[Qx \ (F \land G)]_p \ \Rightarrow_{\mathrm{MS}} \ H[(Qx \ F) \land G]_p \\ H[Qx \ (F \lor G)]_p \ \Rightarrow_{\mathrm{MS}} \ H[(Qx \ F) \lor G]_p \\ H[\forall x \ (F \land F')]_p \ \Rightarrow_{\mathrm{MS}} \ H[(\forall x \ F) \land (\forall x \ F')]_p \\ H[\exists x \ (F \lor F')]_p \ \Rightarrow_{\mathrm{MS}} \ H[(\exists x \ F) \lor (\exists x \ F')]_p \\ H[Qx \ G]_p \ \Rightarrow_{\mathrm{MS}} \ H[G]_p \end{split}$$

Variable Renaming

Rename all variables in H such that there are no two different positions p, q with $H|_p = Qx F$ and $H|_q = Q'x G$.

Standard Skolemization

Apply the reduction system:

$$H[\exists x F]_p \Rightarrow_{\mathrm{SK}} H[F\{x \mapsto f(y_1, \dots, y_n)\}]_p$$

where p has minimal length, $\{y_1, \ldots, y_n\}$ are the free variables in $\exists x F$, and f/n is a new function symbol to H.

Final Steps

Apply the reduction system modulo commutativity of \land , \lor to push \forall upward:

$$H[(\forall x F) \land G]_p \Rightarrow_{\text{OCNF}} H[\forall x (F \land G)]_p$$

$$H[(\forall x F) \lor G]_p \Rightarrow_{\text{OCNF}} H[\forall x (F \lor G)]_p$$

Note that variable renaming ensures that x does not occur in G.

Apply the reduction system modulo commutativity of \land , \lor to push disjunctions downward:

$$H[(F \wedge F') \vee G]_p \Rightarrow_{\mathrm{CNF}} H[(F \vee G) \wedge (F' \vee G)]_p$$

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ -algebra \mathcal{A} such that

- $U_{\mathcal{A}} = T_{\Sigma}$ (= the set of ground terms over Σ)
- $f_{\mathcal{A}}: (s_1, \ldots, s_n) \mapsto f(s_1, \ldots, s_n), f/n \in \Omega$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $P/m \in \Pi$ may be freely interpreted as relations $P_{\mathcal{A}} \subseteq T_{\Sigma}^{m}$.

Proposition 3.10 Every set of ground atoms I uniquely determines a Herbrand interpretation \mathcal{A} via

$$(s_1,\ldots,s_n) \in P_{\mathcal{A}}$$
 iff $P(s_1,\ldots,s_n) \in I$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ -ground atoms.

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F, if $I \models F$.

Theorem 3.11 (Herbrand) Let N be a set of (universally quantified) Σ -clauses.

 $N \text{ satisfiable } \Leftrightarrow N \text{ has a Herbrand model (over } \Sigma)$ $\Leftrightarrow G_{\Sigma}(N) \text{ has a Herbrand model (over } \Sigma)$

where $G_{\Sigma}(N) = \{ C\sigma \text{ ground clause } | (\forall \vec{x} C) \in N, \sigma : X \to T_{\Sigma} \}$ is the set of ground instances of N.

[The proof will be given below in the context of the completeness proof for general resolution.]