3.4 Algorithmic Problems

Validity(F'): = F ?

Satisfiability(F'): F' satisfiable?

Entailment(F,G): does F' entail G7

Model(A,F): A= F?

Solve(A,F): find an assignment 8 such that A, | F.
Solve(F'): find a substitution ¢ such that = Fo.

Abduce(F): find G with “certain properties” such that G = F.

Theory of an Algebra

Let A € ¥-Alg. The (first-order) theory of A is defined as

Th(A) ={G eFs(X) | ARG}

Problem of axiomatizability:
For which algebras A can one axiomatize Th(A), that is, can one write down a formula
F (or a recursively enumerable set I’ of formulas) such that

Th(A)={G | F = G1}?

(analogously for classes of algebras).

Two Interesting Theories

Let Xpres = ({0/0,5/1,+/2}, 0) and Z, = (Z,0, s, +) its standard interpretation on the
integers. Th(Z.) is called Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of Z, considers the natural numbers N as standard
interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
¢ > 0 such that Th(Z,) ¢ NTIME(2*")).

However, N, = (N, 0, s, 4, %), the standard interpretation of Xp4 = ({0/0,s/1,4/2,%/2},
(), has as theory the so-called Peano arithmetic which is undecidable and not even re-
cursively enumerable.
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(Non-)Computability Results
1. For most signatures ¥, validity is undecidable for Y-formulas.
(One can easily encode Turing machines in most signatures.)

2. Godel’s completeness theorem:
For each signature ¥, the set of valid ¥-formulas is recursively enumerable.
(We will prove this by giving complete deduction systems.)

3. Godel’s incompleteness theorem:
For ¥ = ¥p, and N, = (N, 0, s, +, %), the theory T'h(N,) is not recursively enu-
merable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Some Decidable Fragments

Some decidable fragments:

e Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

e Variable-free formulas without equality: satisfiability is NP-complete. (why?)

e Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

e Finite model checking is decidable in exponential time and PSPACE-complete.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by
e reduction of logical concepts,
e efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.
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Prenex Normal Form (Traditional)

Prenex formulas have the form

QlfL'l P in‘n F,

where F' is quantifier-free and @; € {V, 3}; we call Q2 ...Q,x, the quantifier prefix
and F' the matrix of the formula.

Computing prenex normal form by the reduction system = p:

H{(F < G), =p H[F — G) NG — F),
H[-QzF|, =p H[Qz-F],
H[((QzF) o G), =p H[Qy(F{z—y} o G)],

o€ {A,V}

H[(QzF) = G), =p H[Qy(F{z —y} — G,
H[(F o (QzG))l, =p H[Qy(F o G{z — y})l,,
o€ {A,V,—}

Here y is always assumed to be some fresh variable and @ denotes the quantifier dual
to Q,i.e,V=dand 3=V.

Skolemization
Intuition: replacement of dy by a concrete choice function computing y from all the
arguments y depends on.

Transformation =g
(to be applied outermost, not in subformulas):

Vay, ..., e,y F =g Yai,...,z, F{y— f(x1,...,2,)}

where f/n is a new function symbol (Skolem function).

Together: F'=}, G =% H
prenex prenex, no 3

Theorem 3.7 Let F, GG, and H as defined above and closed. Then
(i) F and G are equivalent.
(ii) H = G but the converse is not true in general.

(iii) G satisfiable (w.r.t. ¥-Alg) < H satisfiable (w.r.t. ¥'-Alg) where ¥/ = (2 U
SKF,IL) if © = (Q, 11).
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The Complete Picture
(G quantifier-free)

F =% Q- Quyn G
=% Yoy, ..., o, H (m <n, H quantifier-free)
k n;
:>CNF v.ﬁUl, y Tm /\ \/ LZ]
i=1 j=1
leave out ——
clauses C;

PR
N ={C,...,Cy} is called the clausal (normal) form (CNF) of F.
Note: The variables in the clauses are implicitly universally quantified.

Theorem 3.8 Let F' be closed. Then F' |= F. (The converse is not true in general.)

Theorem 3.9 Let I be closed. Then F' is satisfiable iff F' is satisfiable iff N is satisfiable

Optimization
The normal form algorithm described so far leaves lots of room for optimization. Note

that we only can preserve satisfiability anyway due to Skolemization.
e the size of the CNF is exponential when done naively; the transformations we
introduced already for propositional logic avoid this exponential growth;

e we want to preserve the original formula structure;

e we want small arity of Skolem functions (see next section).
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