Craig-Interpolation

Theorem 3.41 (Craig 1957) Let ' and G be two propositional formulas such that
F |= G. Then there exists a formula H (called the interpolant for F' = G), such that H

contains only prop. variables occurring both in F' and in G, and such that F' = H and
HEG.

Proof. Translate F' and =G into CNF. let N and M, resp., denote the resulting clause
set. Choose an atom ordering > for which the prop. variables that occur in F' but not in
G are maximal. Saturate N into N’ w.r.t. Resl; with an empty selection function sel.
Then saturate N'U M w.r.t. Res, to derive L. As N’ is already saturated, due to the
ordering restrictions only inferences need to be considered where premises, if they are
from N, only contain symbols that also occur in G. The conjunction of these premises
is an interpolant H.

The theorem also holds for first-order formulas, but in the general case, a proof based
on resolution technology is complicated because of Skolemization. O

3.13 Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (e.g., if they are tautologies)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C' a ground clause (not necessarily in N). C' is
called redundant w.r.t. N, if there exist C1,...,C,, € N, n > 0, such that C; < C' and
Cy,...,C, EC.

Redundancy for general clauses: C'is called redundant w.r.t. N, if all ground instances
Co of C are redundant w.r.t. Gx(N).

Intuition: If a ground clause C' is redundant, then I = C.

Note: The same ordering > is used for ordering restrictions and for redundancy (and
for the completeness proof).
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Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations are sufficient for us,
however.

Proposition 3.42 Some redundancy criteria:
e (' tautology (i.e., = C) = C redundant w.r.t. any set N.
e Co CD = D redundant w.r.t. N U{C}.

(Under certain conditions one may also use non-strict subsumption, but this requires a
slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. Resy,) if

ResZ (N \ Red(N)) C N U Red(N)

sel

Theorem 3.43 Let N be saturated up to redundancy. Then

NeElsleN

Proof (Sketch).

(i) Ground case: Consider the construction of the candidate interpretation I, for ResZ

sel”

If a clause C' € N is redundant, then there exist C1,...,C, € N, n > 0, such that
CZ' < C and C’l,...,C’n ):C

By minimality, Io = C;, therefore I¢ = C.
In particular, C' is not productive.

= Redundant clauses are not used as premises for “essential” inferences, so the rest
of the proof works as before.

(i) Lifting: no additional problems over the proof of Theorem 3.40. O

78



Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation, we have to ensure that
redundant clauses remain redundant in the rest of the derivation.

Theorem 3.44
(i) N C M = Red(N) C Red(M)
(ii)) M C Red(N) = Red(N) C Red(N \ M)

Proof. (i) Obvious.

(ii) Follows from the compactness of first-order logic and the well-foundedness of the
multiset extension of the clause ordering. O

Recall that Red(NN) may include clauses that are not in N.

Computing Saturated Sets
Redundancy is preserved when, during a theorem proving derivation one adds new
clauses or deletes redundant clauses. This motivates the following definitions:

A run of the resolution calculus is a sequence Ny = Ny = Ny ..., such that
(i) Ni = Nit1, and
(ii) all clauses in N; \ N;y; are redundant w.r.t. V; ;.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w.r.t. the remaining ones.

For a run, we define Noo = ;5o Vi and Ni = U5 (;5; IV;-The set N, of all persistent
clauses is called the limit of the run. - -

Lemma 3.45 Let Ngo F Ny = Ny & ... be a run. Then Red(N;) C Red(N.,) and
Red(N;) C Red(N,) for every i.

Proof. Exercise. O
Corollary 3.46 N; C N, U Red(N,) for every i.

Proof. If C' € N; \ N,, then there is a k > i such that C' € Ny \ Ngi1, so C must be
redundant w.r.t. Ni,;. Consequently, C' is redundant w.r.t. V,. O

Even if a set N is inconsistent, it could happen that L is never derived, because some
required inference is never computed.

The following definition rules out such runs:
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A run is called fair, if the conclusion of every inference from clauses in N, \ Red(N,) is
contained in some N; U Red(NV;).

Lemma 3.47 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N, is contained in some N; U Red(N;), and therefore contained in N, U
Red(N,). Hence N, is saturated up to redundancy. O

Theorem 3.48 (Refutational Completeness: Dynamic View) Let No = N; F Ny -
... be a fair run, let N, be its limit. Then Ny has a model if and only if 1. ¢ N,.

Proof. (<«): By fairness, N, is saturated up to redundancy. If L ¢ N,, then it has a
Herbrand model. Since every clause in Ny is contained in N, or redundant w.r.t. N,
this model is also a model of Gy (Vy) and therefore a model of Nj.

(=): Obvious, since Ny = N.. =

Simplifications

In theory, the definition of a run permits to add arbitrary clauses that are entailed by
the current ones.

In practice, we restrict to two cases:

e We add conclusions of Res-inferences from non-redundant premises.

~» necessary to guarantee fairness

e We add clauses that are entailed by the current ones if this makes other clauses
redundant:

Nu{C} v NuU{C,D} - NU{D}
if NU{C} = D and C € Red(N U{D}).

Net effect: C' is simplified to D
~» useful to get easier/smaller clause sets

Examples of simplification techniques:

e Deletion of duplicated literals:

NU{CVLVL} + Nu{CvVL}

e Subsumption resolution:

NU{DVL, CVDocVLs}+ NU{DVL, CV Do}
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