Saturation of Sets of General Clauses

Corollary 3.30 Let N be a set of general clauses saturated under Res, i.e., $Res(N) \subseteq N$. Then also $G_{\Sigma}(N)$ is saturated, that is,

$$Res(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$$

Proof. W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Otherwise make them disjoint, and this renaming process changes neither Res(N) nor $G_{\Sigma}(N)$.)

Let $C' \in Res(G_{\Sigma}(N))$, meaning (i) there exist resolvable ground instances $D\sigma$ and $C\rho$ of N with resolvent C', or else (ii) C' is a factor of a ground instance $C\sigma$ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent C'' with $C'' \tau = C'$, for a suitable substitution τ . As $C'' \in N$ by assumption, we obtain that $C' \in G_{\Sigma}(N)$.

Case (ii): Similar.

Soundness for General Clauses

Proposition 3.31 The general resolution calculus is sound.

Proof. We have to show that, if $\sigma = \text{mgu}(A, B)$ then $\{\forall \vec{x} \ (D \lor B), \forall \vec{y} \ (C \lor \neg A)\} \models \forall \vec{z} \ (D \lor C)\sigma$ and $\{\forall \vec{x} \ (C \lor A \lor B)\} \models \forall \vec{z} \ (C \lor A)\sigma$.

Let \mathcal{A} be a model of $\forall \vec{x} \ (D \lor B)$ and $\forall \vec{y} \ (C \lor \neg A)$. By Lemma 3.22, \mathcal{A} is also a model of $\forall \vec{z} \ (D \lor B)\sigma$ and $\forall \vec{z} \ (C \lor \neg A)\sigma$ and by Lemma 3.21, \mathcal{A} is also a model of $(D \lor B)\sigma$ and $(C \lor \neg A)\sigma$. Let β be an assignment. If $\mathcal{A}(\beta)(B\sigma) = 0$, then $\mathcal{A}(\beta)(D\sigma) = 1$. Otherwise $\mathcal{A}(\beta)(B\sigma) = \mathcal{A}(\beta)(A\sigma) = 1$, hence $\mathcal{A}(\beta)(\neg A\sigma) = 0$ and therefore $\mathcal{A}(\beta)(C\sigma) = 1$. In both cases $\mathcal{A}(\beta)((D \lor C)\sigma) = 1$, so $\mathcal{A} \models (D \lor C)\sigma$ and by Lemma 3.21, $\mathcal{A} \models \forall \vec{z} \ (D \lor C)\sigma$.

The proof for factorization inferences is similar.

Herbrand's Theorem

Lemma 3.32 Let N be a set of Σ -clauses, let \mathcal{A} be an interpretation. Then $\mathcal{A} \models N$ implies $\mathcal{A} \models G_{\Sigma}(N)$.

Lemma 3.33 Let N be a set of Σ -clauses, let \mathcal{A} be a Herbrand interpretation. Then $\mathcal{A} \models G_{\Sigma}(N)$ implies $\mathcal{A} \models N$.

Proof. Let \mathcal{A} be a Herbrand model of $G_{\Sigma}(N)$. We have to show that $\mathcal{A} \models \forall \vec{x} \ C$ for all clauses $\forall \vec{x} \ C$ in N. This is equivalent to $\mathcal{A} \models C$, which in turn is equivalent to $\mathcal{A}(\beta)(C) = 1$ for all assignments β .

Choose $\beta: X \to U_{\mathcal{A}}$ arbitrarily. Since \mathcal{A} is a Herbrand interpretation, $\beta(x)$ is a ground term for every variable x, so there is a substitution σ such that $x\sigma = \beta(x)$ for all variables x occurring in C. Now let γ be an arbitrary assignment, then for every variable occurring in C we have $(\gamma \circ \sigma)(x) = \mathcal{A}(\gamma)(x\sigma) = x\sigma = \beta(x)$ and consequently $\mathcal{A}(\beta)(C) =$ $\mathcal{A}(\gamma \circ \sigma)(C) = \mathcal{A}(\gamma)(C\sigma)$. Since $C\sigma \in G_{\Sigma}(N)$ and \mathcal{A} is a Herbrand model of $G_{\Sigma}(N)$, we get $\mathcal{A}(\gamma)(C\sigma) = 1$, so \mathcal{A} is a model of C.

Theorem 3.34 (Herbrand) A set N of Σ -clauses is satisfiable if and only if it has a Herbrand model over Σ .

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let $N \not\models \bot$.

$$N \not\models \bot \Rightarrow \bot \notin Res^{*}(N) \quad \text{(resolution is sound)}$$

$$\Rightarrow \bot \notin G_{\Sigma}(Res^{*}(N))$$

$$\Rightarrow I_{G_{\Sigma}(Res^{*}(N))} \models G_{\Sigma}(Res^{*}(N)) \quad \text{(Thm. 3.17; Cor. 3.30)}$$

$$\Rightarrow I_{G_{\Sigma}(Res^{*}(N))} \models Res^{*}(N) \quad \text{(Lemma 3.33)}$$

$$\Rightarrow I_{G_{\Sigma}(Res^{*}(N))} \models N \quad (N \subseteq Res^{*}(N)) \quad \Box$$

The Theorem of Löwenheim-Skolem

Theorem 3.35 (Löwenheim–Skolem) Let Σ be a countable signature and let S be a set of closed Σ -formulas. Then S is satisfiable iff S has a model over a countable universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at most countably many new Skolem functions to Σ' . As Σ' is countable, so is $T_{\Sigma'}$, the universe of Herbrand-interpretations over Σ' . Now apply Theorem 3.34.

Refutational Completeness of General Resolution

Theorem 3.36 Let N be a set of general clauses where $Res(N) \subseteq N$. Then

 $N \models \bot$ iff $\bot \in N$.

Proof. Let $Res(N) \subseteq N$. By Corollary 3.30: $Res(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N)$

 $N \models \bot \Leftrightarrow G_{\Sigma}(N) \models \bot \qquad \text{(Lemma 3.32/3.33; Theorem 3.34)}$ $\Leftrightarrow \bot \in G_{\Sigma}(N) \qquad \text{(propositional resolution sound and complete)}$ $\Leftrightarrow \bot \in N \quad \Box$

Compactness of Predicate Logic

Theorem 3.37 (Compactness Theorem for First-Order Logic) Let S be a set of closed first-order formulas. S is unsatisfiable \Leftrightarrow some finite subset $S' \subseteq S$ is unsatisfiable.

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let S be unsatisfiable and let N be the set of clauses obtained by Skolemization and CNF transformation of the formulas in S. Clearly $Res^*(N)$ is unsatisfiable. By Theorem 3.36, $\perp \in Res^*(N)$, and therefore $\perp \in Res^n(N)$ for some $n \in \mathbb{N}$. Consequently, \perp has a finite resolution proof B of depth $\leq n$. Choose S' as the subset of formulas in S such that the corresponding clauses contain the assumptions (leaves) of B.

3.12 Ordered Resolution with Selection

Motivation: Search space for *Res very* large.

Ideas for improvement:

 In the completeness proof (Model Existence Theorem 3.17) one only needs to resolve and factor maximal atoms
⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct

 \Rightarrow ordering restrictions

2. In the proof, it does not really matter with which negative literal an inference is performed

 \Rightarrow choose a negative literal don't-care-nondeterministically

 \Rightarrow selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal atoms \Rightarrow If we impose ordering restrictions on ground inferences, the proof remains correct:

Ordered Resolution:

$$\frac{D \lor A \qquad C \lor \neg A}{D \lor C}$$

if $A \succ L$ for all L in D and $\neg A \succeq L$ for all L in C.

Ordered Factorization:

$$\frac{C \lor A \lor A}{C \lor A}$$

if $A \succeq L$ for all L in C.

Problem: How to extend this to non-ground inferences?

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances.

An ordering \succ on atoms (or terms) is called *stable under substitutions*, if $A \succ B$ implies $A\sigma \succ B\sigma$.

Note:

- We can not require that $A \succ B$ iff $A\sigma \succ B\sigma$.
- We can not require that \succ is total on non-ground atoms.

Consequence: In the ordering restrictions for non-ground inferences, we have to replace \succ by $\not\preceq$ and \succeq by $\not\prec$.

Ordered Resolution:

$$\frac{D \lor B \qquad C \lor \neg A}{(D \lor C)\sigma}$$

if $\sigma = mgu(A, B)$ and $B\sigma \not\preceq L\sigma$ for all L in D and $\neg A\sigma \not\prec L\sigma$ for all L in C.

Ordered Factorization:

$$\frac{C \lor A \lor B}{(C \lor A)\sigma}$$

if $\sigma = mgu(A, B)$ and $A\sigma \not\prec L\sigma$ for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for individual clauses.

A selection function is a mapping

sel : $C \mapsto$ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X:

$$\boxed{\neg A} \lor \neg A \lor B$$
$$\boxed{\neg B_0} \lor \boxed{\neg B_1} \lor A$$

Intuition:

- If a clause has at least one selected literal, compute only inferences that involve a selected literal.
- If a clause has no selected literals, compute only inferences that involve a maximal literal.

Resolution Calculus Res_{sel}^{\succ}

The resolution calculus Res_{sel}^\succ is parameterized by

- a selection function sel
- and a well-founded ordering ≻ on atoms that is total on ground atoms and stable under substitutions.

$$\frac{D \lor B \qquad C \lor \neg A}{(D \lor C)\sigma} \qquad [ordered resolution with selection]$$

if the following conditions are satisfied:

- (i) $\sigma = mgu(A, B);$
- (ii) $B\sigma$ strictly maximal in $D\sigma \vee B\sigma$, i.e., $B\sigma \not\leq L\sigma$ for all L in D;
- (iii) nothing is selected in $D \vee B$ by sel;
- (iv) either $\neg A$ is selected, or nothing is selected in $C \lor \neg A$ and $\neg A\sigma$ is maximal in $C\sigma \lor \neg A\sigma$, i.e., $\neg A\sigma \not\prec L\sigma$ for all L in C.

$$\frac{C \lor A \lor B}{(C \lor A)\sigma} \qquad [ordered \ factorization]$$

if the following conditions are satisfied:

- (i) $\sigma = mgu(A, B);$
- (ii) $A\sigma$ is maximal in $C\sigma \lor A\sigma \lor B\sigma$, i. e., $A\sigma \not\prec L\sigma$ for all L in C.
- (iii) nothing is selected in $C \lor A \lor B$ by sel.

Special Case: Res_{sel}^{\succ} for Propositional Logic

For ground clauses the resolution inference rule simplifies to

$$\frac{D \lor A \qquad C \lor \neg A}{D \lor C}$$

if the following conditions are satisfied:

- (i) $A \succ L$ for all L in D;
- (ii) nothing is selected in $D \lor A$ by sel;
- (iii) $\neg A$ is selected in $C \lor \neg A$, or nothing is selected in $C \lor \neg A$ and $\neg A \succeq L$ for all L in C.

Analogously, the factorization rule simplifies to

$$\frac{C \lor A \lor A}{C \lor A}$$

if the following conditions are satisfied:

- (i) $A \succeq L$ for all L in C;
- (ii) nothing is selected in $C \lor A \lor A$ by sel.

Search Spaces Become Smaller

1	$A \lor B$		we assume $A \succ B$
2	$A \lor \neg B$		and sel as indicated by
3	$\neg A \lor B$		X. The maximal lit-
4	$\neg A \lor \neg B$		eral in a clause is de-
5	$B \lor B$	Res 1, 3	picted in red.
6	B	Fact 5	
7	$\neg A$	Res $6, 4$	
8	A	Res 6, 2	
9	\perp	Res 8, 7	

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

Avoiding Rotation Redundancy

From

$$\frac{\underbrace{C_1 \lor A \quad C_2 \lor \neg A \lor B}}{\underbrace{C_1 \lor C_2 \lor B}}_{C_1 \lor C_2 \lor C_3} \underbrace{C_3 \lor \neg B}$$

we can obtain by rotation

$$\frac{C_1 \lor A}{C_1 \lor C_2 \lor \neg A \lor B \quad C_3 \lor \neg B}{C_2 \lor \neg A \lor C_3}$$

another proof of the same clause. In large proofs many rotations are possible. However, if $A \succ B$, then the second proof does not fulfill the ordering restrictions.

Conclusion: In the presence of ordering restrictions (however one chooses \succ) no rotations are possible. In other words, orderings identify exactly one representant in any class of rotation-equivalent proofs.

Lifting Lemma for Res_{sel}^{\succ}

Lemma 3.38 Let D and C be variable-disjoint clauses. If

$$\begin{array}{ccc} D & C \\ \downarrow \sigma & \downarrow \rho \\ \underline{D\sigma} & \underline{C\rho} \\ \hline C' \end{array} \qquad [propositional inference in Res_{sel}^{\succ}] \end{array}$$

and if $\operatorname{sel}(D\sigma) \simeq \operatorname{sel}(D)$, $\operatorname{sel}(C\rho) \simeq \operatorname{sel}(C)$ (that is, "corresponding" literals are selected), then there exists a substitution τ such that

$$\frac{D \quad C''}{C''} \qquad [\text{inference in } Res_{\text{sel}}^{\succ}]$$
$$\downarrow \tau$$
$$C' = C''\tau$$

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.39 Let N be a set of general clauses saturated under $\operatorname{Res}_{\operatorname{sel}}^{\succ}$, i. e., $\operatorname{Res}_{\operatorname{sel}}^{\succ}(N) \subseteq N$. Then there exists a selection function sel' such that $\operatorname{sel}|_N = \operatorname{sel}'|_N$ and $G_{\Sigma}(N)$ is also saturated, i. e.,

 $Res_{sel'}^{\succ}(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$

Proof. We first define the selection function sel' such that $\operatorname{sel}'(C) = \operatorname{sel}(C)$ for all clauses $C \in G_{\Sigma}(N) \cap N$. For $C \in G_{\Sigma}(N) \setminus N$ we choose a fixed but arbitrary clause $D \in N$ with $C \in G_{\Sigma}(D)$ and define $\operatorname{sel}'(C)$ to be those occurrences of literals that are ground instances of the occurrences selected by sel in D. Then proceed as in the proof of Cor. 3.30 using the above lifting lemma.

Soundness and Refutational Completeness

Theorem 3.40 Let \succ be an atom ordering and sel a selection function such that $Res_{sel}^{\succ}(N) \subseteq N$. Then

 $N \models \bot \Leftrightarrow \bot \in N$

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider first the propositional level: Construct a candidate interpretation I_N as for unrestricted resolution, except that clauses C in N that have selected literals are not productive, even if they are false in I_C and if their maximal atom occurs only once and is positive. The result for general clauses follows using Corollary 3.39.