Literals

L == A (positive literal)
| —A (negative literal)

Clauses

c,D == 1 (empty clause)
| L1V...VLg k>1 (non-empty clause)

General First-Order Formulas

Fyx(X) is the set of first-order formulas over ¥ defined as follows:

F.GH == 1 (falsum)
| T (verum)
| A (atomic formula)
| -F (negation)
| (FAG) (conjunction)
| (FVGQG) (disjunction)
| (F—G) (implication)
| (F+<G) (equivalence)
| VaF (universal quantification)
= (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.
Vai,...,x, ' and dxq,...,z, F abbreviate Vz;...Vx,F and dx,...dz, F.
We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+txu for +(s, *(t,u))

sxu<t+ov for < (x(s,u),+(t,v))
—$ for —(s)
s! for I(s)
sl for ()
0 for ()

37

Example: Peano Arithmetic

Ypa = (Qpa, Upa)

Qpa = {0/0, +/2, x/2, s/1}

py = {</2, </2)

+, %, <, <infix; x >, + >, < >, <

Examples of formulas over this signature are:

Ve,y(r <y Jz(x+ 2= y))
vy (z +y =~ y)
Vi, y (¢ s(y) = wxy +x)

Va,y (s(z) = s(y) >z~ y)
Vedy (x <y A—-Fz(z < 2N 2 <y))

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

F(s1, - 50) = {£} UL {ip | p € pos(s:) },
pos(P(t1, - 1)) = {e} UL, {ip | p € pos(t) },

The prefix order <, the subformula (subterm) operator, the formula (term) replacement

operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Bound and Free Variables

In Qz F, @ € {3, V}, we call F' the scope of the quantifier Qz. An occurrence of
a variable x is called bound, if it is inside the scope of a quantifier Qx. Any other

occurrence of a variable is called free.
Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

38

Example:

scope of y
7\

7 N
scope of =

Vy (Ve P(z)) — Qzy))

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of
x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.

Substitutions are mappings
o: X — Tx(X)

such that the domain of o, that is, the set
dom(c) ={zx € X |o(z) #z},

is finite. The set of variables introduced by o, that is, the set of variables occurring in
one of the terms o(x), with x € dom(o), is denoted by codom(o).

Substitutions are often written as {z1 +— s1,...,2, = s,}, with z; pairwise distinct,
and then denote the mapping

Si, if = T;
{x1|—>51,...,xn»—>sn}(y):{ Y

y, otherwise

We also write zo for o(x).

The modification of a substitution o at z is defined as follows:

t, ify=u

UMHWMZ{

o(y), otherwise

39

Why Substitution is Complicated

We define the application of a substitution ¢ to a term ¢ or formula F' by structural
induction over the syntactic structure of ¢ or F' by the equations depicted on the next

page.

In the presence of quantification it is surprisingly complex: We need to make sure that
the (free) variables in the codomain of o are not captured upon placing them into the
scope of a quantifier QQy, hence the bound variable must be renamed into a “fresh”, that
is, previously unused, variable z.

Application of a Substitution

“Homomorphic” extension of ¢ to terms and formulas:

f(s1,...,80)0 = f(s10,...,8,0)
lo=1
To=T

P(s1,...,8,)0 = P(s10,...,8,0)
(uxv)o = (uo =~ vo)
—Fo =—(Fo)
(FoG)o = (Fo o Go) ; for each binary connective o
(Qr F)o = Qz(Folxw— z]); with z a fresh variable

40

3.2 Semantics
To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

Algebras

A Y-algebra (also called Y-interpretation or X-structure) is a triple
A= (Ua, (fa:Ul = Ud)pmen; (Pa S UY)p/men)
where Uy # () is a set, called the universe of A.

By ¥-Alg we denote the class of all 3-algebras.

Assignments
A variable has no intrinsic meaning. The meaning of a variable has to be defined
externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Y-algebra A), is a map

ﬂ:X—)UA.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to

By structural induction we define
A(B) - To(X) = Ua

as follows:

A(B)(x) = B(x), reX
AB)(f(s15- -+ 8n)) = Fa(AB)(s1), .., A(B)(sn)), [/n €

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let Blx — a] : X — Uy, for © € X and a € Uy, denote the
assignment

a ifr=y

Blz — al(y) = {

B(y) otherwise

41

Truth Value of a Formula in A with Respect to

A(B) : Fs(X) — {0, 1} is defined inductively as follows:

Il
o

A(B)(sn)) € Py then 1 else 0

N N N N N O Y
|
2
=
—
P
—~
=
&
~
P
~—~~
=
Q
~—
~—

A(B)(~t) = if A(B)(s) = .A(5)(t) then 1 else 0
AB)(=F) = 1= AB)(F)
AB)EF NG i)
APB)EV G) = max(A(S)(F), AB)(G))
AB)(F — G) = max(l — A(B)(F), A(B)(G))
A(ﬁ)(F ~ G) = it A(B)(F)=A(B)(G) then 1 else 0
B)Vz F) = min{A(S[z — a])(F)}
(

Example
The “Standard” Interpretation for Peano Arithmetic:

Us = {0,1,2,..}

Oy = 0

Sy © ne—=n+1

+n : (nym)—n+m

sy (n,m)—>nxm

<y = {(n,m) |n less than or equal to m }
<y = {(n,m)|n less than m }

Note that N is just one out of many possible X p 4-interpretations.
Values over N for sample terms and formulas:

Under the assignment 5 : x — 1,y — 3 we obtain

N(B)(s(z) + 5(0)) = 3
N(B)(z +y ~ s(y)) = 1
N@B)(Vz,y(z+y=y+x) = 1
N(B)(Vz z < y) = 0
N(B)(Vzdy z < y) =1

42

Ground Terms and Closed Formulas
If ¢ is a ground term, then A(5)(t) does not depend on f:

A(B)(t) = A(B)(t)
for every 8 and (.
Analogously, if F' is a closed formula, then A(8)(F) does not depend on g:

A(B)(F) = A(B)(F)
for every 8 and (.

An element a € Uy is called term-generated, if a = A(f3)(t) for some ground term ¢.

In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

Fis true in A under assignment f3:
ABEF o AB)F) =1
F is true in A (A is a model of F; F is valid in A):
AEF & ABEF forall e X = Uy
F is valid (or is a tautology):
EF & AEF foral Ae X-Alg
F is called satisfiable iff there exist A and [such that A, § |= F. Otherwise F' is called

unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all -algebras
A, assignments 3, and substitutions o.

Lemma 3.1 For any X-term t

A(B)(to) = A(Boo)(t),

where S oo : X — Uy is the assignment 5o o(x) = A(S)(zo).

43

Proposition 3.2 For any X-formula F', A(B)(Fo) = A(fo0o)(F).
Corollary 3.3 A, = Fo < A foocEF

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F'), written F' |= G, if for all A € ¥-Alg
and 5 € X — Uy, whenever A, 8 | F, then A, 5 E G.

F and G are called equivalent, written F' H G, if for all A € 3-Alg and € X — Uy
we have A, EF < A [EG.

Proposition 3.4 F entails G iff (F — G) is valid
Proposition 3.5 F' and G are equivalent iff (F' <> G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N = F

&= forall A€ X-Algand f € X - Uy if A,f G, forall G € N, then A, 5 = F.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.6 Let F' and G be formulas, let N be a set of formulas. Then
(i) F is valid if and only if =F' is unsatisfiable.
(ii) F = G if and only if F A\ =G is unsatisfiable.

(iii) N = G if and only if N U {—~G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

44

