
Literals

L ::= A (positive literal)
| ¬A (negative literal)

Clauses

C,D ::= ⊥ (empty clause)
| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F,G,H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

∀x1, . . . , xn F and ∃x1, . . . , xn F abbreviate ∀x1 . . .∀xn F and ∃x1 . . .∃xn F .

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+ t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t+ v for ≤ (∗(s, u),+(t, v))
−s for −(s)
s! for !(s)
|s| for | |(s)
0 for 0()

37

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)
ΩPA = {0/0, +/2, ∗/2, s/1}
ΠPA = {≤/2, </2}
+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x, y (x ≤ y ↔ ∃z(x+ z ≈ y))
∃x∀y (x+ y ≈ y)
∀x, y (x ∗ s(y) ≈ x ∗ y + x)
∀x, y (s(x) ≈ s(y) → x ≈ y)
∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

pos(x) = {ε},
pos(f(s1, . . . , sn)) = {ε} ∪

⋃n
i=1{ ip | p ∈ pos(si) },

pos(P (t1, . . . , tn)) = {ε} ∪
⋃n

i=1{ ip | p ∈ pos(ti) },

pos(∀xF) = {ε} ∪ { 1p | p ∈ pos(F) },
pos(∃xF) = {ε} ∪ { 1p | p ∈ pos(F) }.

The prefix order ≤, the subformula (subterm) operator, the formula (term) replacement
operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Bound and Free Variables

In QxF, Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx. An occurrence of
a variable x is called bound, if it is inside the scope of a quantifier Qx. Any other
occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

38

Example:

∀y

scope of y
︷ ︸︸ ︷

((∀x

scope of x
︷ ︸︸ ︷

P (x)) → Q(x, y))

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of
x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.

Substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = { x ∈ X | σ(x) 6= x },

is finite. The set of variables introduced by σ, that is, the set of variables occurring in
one of the terms σ(x), with x ∈ dom(σ), is denoted by codom(σ).

Substitutions are often written as {x1 7→ s1, . . . , xn 7→ sn}, with xi pairwise distinct,
and then denote the mapping

{x1 7→ s1, . . . , xn 7→ sn}(y) =

{

si, if y = xi

y, otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

{

t, if y = x

σ(y), otherwise

39

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural
induction over the syntactic structure of t or F by the equations depicted on the next
page.

In the presence of quantification it is surprisingly complex: We need to make sure that
the (free) variables in the codomain of σ are not captured upon placing them into the
scope of a quantifier Qy, hence the bound variable must be renamed into a “fresh”, that
is, previously unused, variable z.

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f(s1, . . . , sn)σ = f(s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

P (s1, . . . , sn)σ = P (s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(F ◦G)σ = (Fσ ◦ Gσ) ; for each binary connective ◦

(QxF)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

40

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

Algebras

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un
A → UA)f/n∈Ω, (PA ⊆ Um

A)P/m∈Π)

where UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined
externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A), is a map
β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → UA

as follows:

A(β)(x) = β(x), x ∈ X
A(β)(f(s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f/n ∈ Ω

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let β[x 7→ a] : X → UA, for x ∈ X and a ∈ UA, denote the
assignment

β[x 7→ a](y) =

{

a if x = y

β(y) otherwise

41

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P (s1, . . . , sn)) = if (A(β)(s1), . . . ,A(β)(sn)) ∈ PA then 1 else 0

A(β)(s ≈ t) = if A(β)(s) = A(β)(t) then 1 else 0
A(β)(¬F) = 1−A(β)(F)

A(β)(F ∧G) = min(A(β)(F),A(β)(G))

A(β)(F ∨G) = max(A(β)(F),A(β)(G))

A(β)(F → G) = max(1−A(β)(F),A(β)(G))

A(β)(F ↔ G) = if A(β)(F) = A(β)(G) then 1 else 0

A(β)(∀xF) = min
a∈UA

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈UA

{A(β[x 7→ a])(F)}

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n+ 1

+N : (n,m) 7→ n+m

∗N : (n,m) 7→ n ∗m

≤N = { (n,m) | n less than or equal to m }

<N = { (n,m) | n less than m }

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for sample terms and formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x+ y ≈ s(y)) = 1
N(β)(∀x, y(x+ y ≈ y + x)) = 1
N(β)(∀z z ≤ y) = 0
N(β)(∀x∃y x < y) = 1

42

Ground Terms and Closed Formulas

If t is a ground term, then A(β)(t) does not depend on β:

A(β)(t) = A(β ′)(t)

for every β and β ′.

Analogously, if F is a closed formula, then A(β)(F) does not depend on β:

A(β)(F) = A(β ′)(F)

for every β and β ′.

An element a ∈ UA is called term-generated, if a = A(β)(t) for some ground term t.

In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

F is true in A under assignment β:

A, β |= F :⇔ A(β)(F) = 1

F is true in A (A is a model of F ; F is valid in A):

A |= F :⇔ A, β |= F for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A, β |= F . Otherwise F is called
unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras
A, assignments β, and substitutions σ.

Lemma 3.1 For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → UA is the assignment β ◦ σ(x) = A(β)(xσ).

43

Proposition 3.2 For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F).

Corollary 3.3 A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all A ∈ Σ-Alg
and β ∈ X → UA, whenever A, β |= F , then A, β |= G.

F and G are called equivalent, written F |=| G, if for all A ∈ Σ-Alg and β ∈ X → UA

we have A, β |= F ⇔ A, β |= G.

Proposition 3.4 F entails G iff (F → G) is valid

Proposition 3.5 F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e. g., N |= F

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA: if A, β |= G, for all G ∈ N , then A, β |= F .

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.6 Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

44

