
2.5 Improving the CNF Transformation

The goal

“find a formula G in CNF such that F |=| G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ ⇔ G |= ⊥”

we can get an efficient transformation.

Tseitin Transformation

Proposition 2.12 A formula H [F]p is satisfiable if and only if H [Q]p ∧ (Q ↔ F) is

satisfiable, where Q is a new propositional variable that works as an abbreviation for F .

Satisfiability-preserving CNF transformation (Tseitin 1970):

Use the rule above recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables Q and definitions Q ↔ F).

Convert of the resulting conjunction to CNF (this increases the size only by an addi-
tional factor, since each formula Q ↔ F yields at most four clauses in the CNF).

Polarity-based CNF Transformation

A further improvement is possible by taking the polarity of the subformula F into
account.

Proposition 2.13 Let A be a valuation, let F and G be formulas, and let H = H [F]p
be a formula in which F occurs as a subformula at position p.

If pol(H, p) = 1 and A(F) ≤ A(G), then A(H [F]p) ≤ A(H [G]p).

If pol(H, p) =−1 and A(F) ≥ A(G), then A(H [F]p) ≤ A(H [G]p).

Proof. Exercise. ✷

21

Let Q be a propositional variable not occurring in H [F]p.

Define the formula def(H, p,Q, F) by

• (Q → F), if pol(H, p) = 1,

• (F → Q), if pol(H, p) = −1,

• (Q ↔ F), if pol(H, p) = 0.

Proposition 2.14 Let Q be a propositional variable not occurring in H [F]p. Then

H [F]p is satisfiable if and only if H [Q]p ∧ def(H, p,Q, F) is satisfiable.

Proof. (⇒) Since H [F]p is satisfiable, there exists a Π-valuation A such that A |=
H [F]p. Let Π

′ = Π∪{Q} and define the Π′-valuationA′ byA′(P) = A(P) for P ∈ Π and
A′(Q) = A(F). Obviously A′(def(H, p,Q, F)) = 1; moreover A′(H [Q]p) = A′(H [F]p) =
A(H [F]p) = 1 by Prop. 2.8, so H [Q]p ∧ def(H, p,Q, F) is satisfiable.

(⇐) Let A be a valuation such that A |= H [Q]p ∧ def(H, p,Q, F). So A(H [Q]p) = 1
and A(def(H, p,Q, F)) = 1. We will show that A |= H [F]p.

If pol(H, p) = 0, then def(H, p,Q, F) = (Q ↔ F), so A(Q) = A(F), hence A(H [F]p) =
A(H [Q]p) = 1 by Prop. 2.8.

If pol(H, p) = 1, then def(H, p,Q, F) = (Q → F), so A(Q) ≤ A(F). By Prop. 2.13,
A(H [F]p) ≥ A(H [Q]p) = 1, so A(H [F]p) = 1.

If pol(H, p) = −1, then def(H, p,Q, F) = (F → Q), so A(F) ≤ A(Q). By Prop. 2.13,
A(H [F]p) ≥ A(H [Q]p) = 1, so A(H [F]p) = 1. ✷

Optimized CNF

Not every introduction of a definition for a subformula leads to a smaller CNF.

The number of eventually generated clauses is a good indicator for useful CNF trans-
formations.

22

The functions ν and ν̄ give us an overapproximation for the number of clauses generated
by a formula that occurs positively/negatively.

G ν(G) ν̄(G)

P,⊤,⊥ 1 1

F1 ∧ F2 ν(F1) + ν(F2) ν̄(F1)ν̄(F2)

F1 ∨ F2 ν(F1)ν(F2) ν̄(F1) + ν̄(F2)

¬F1 ν̄(F1) ν(F1)

F1 → F2 ν̄(F1)ν(F2) ν(F1) + ν̄(F2)

F1 ↔ F2 ν(F1)ν̄(F2) + ν̄(F1)ν(F2) ν(F1)ν(F2)+ν̄(F1)ν̄(F2)

A better CNF transformation:

Step 1: Exhaustively apply modulo commutativity of↔ and associativity/commutativity
of ∧, ∨:

H [(F ∧ ⊤)]p ⇒OCNF H [F]p

H [(F ∨ ⊥)]p ⇒OCNF H [F]p

H [(F ↔ ⊥)]p ⇒OCNF H [¬F]p

H [(F ↔ ⊤)]p ⇒OCNF H [F]p

H [(F ∨ ⊤)]p ⇒OCNF H [⊤]p

H [(F ∧ ⊥)]p ⇒OCNF H [⊥]p

H [(F ∧ F)]p ⇒OCNF H [F]p

H [(F ∨ F)]p ⇒OCNF H [F]p

H [(F ∧ (F ∨G))]p ⇒OCNF H [F]p

H [(F ∨ (F ∧G))]p ⇒OCNF H [F]p

H [(F ∧ ¬F)]p ⇒OCNF H [⊥]p

H [(F ∨ ¬F)]p ⇒OCNF H [⊤]p

H [¬⊤]p ⇒OCNF H [⊥]p

H [¬⊥]p ⇒OCNF H [⊤]p

H [(F → ⊥)]p ⇒OCNF H [¬F]p

H [(F → ⊤)]p ⇒OCNF H [⊤]p

H [(⊥ → F)]p ⇒OCNF H [⊤]p

H [(⊤ → F)]p ⇒OCNF H [F]p

23

Step 2: Introduce top-down fresh variables for beneficial subformulas:

H [F]p ⇒OCNF H [P]p ∧ def(H, p, P, F)

where P is new to H [F]p and ν(H [F]p) > ν(H [P]p ∧ def(H, p, P, F)).

Remark: Although computing ν is not practical in general, the test ν(H [F]p) > ν(H [P]p ∧
def(H, p, P, F)) can be computed in constant time.

Step 3: Eliminate equivalences dependent on their polarity:

H [F ↔ G]p ⇒OCNF H [(F → G) ∧ (G → F)]p

if pol(F, p) = 1 or pol(F, p) = 0.

H [F ↔ G]p ⇒OCNF H [(F ∧G) ∨ (¬F ∧ ¬G)]p

if pol(F, p) = −1.

Step 4: Apply steps 2, 3, 4, 5 of ⇒CNF

Remark: The ⇒OCNF algorithm is already close to a state of the art algorithm, but some
additional redundancy tests and simplification mechanisms are missing.

24

