2.5 Improving the CNF Transformation

The goal

"find a formula G in CNF such that $F \models G$ "

is unpractical.

But if we relax the requirement to

"find a formula G in CNF such that $F \models \bot \Leftrightarrow G \models \bot$ "

we can get an efficient transformation.

Tseitin Transformation

Proposition 2.12 A formula $H[F]_p$ is satisfiable if and only if $H[Q]_p \land (Q \leftrightarrow F)$ is satisfiable, where Q is a new propositional variable that works as an abbreviation for F.

Satisfiability-preserving CNF transformation (Tseitin 1970):

Use the rule above recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables Q and definitions $Q \leftrightarrow F$).

Convert of the resulting conjunction to CNF (this increases the size only by an additional factor, since each formula $Q \leftrightarrow F$ yields at most four clauses in the CNF).

Polarity-based CNF Transformation

A further improvement is possible by taking the *polarity* of the subformula F into account.

Proposition 2.13 Let \mathcal{A} be a valuation, let F and G be formulas, and let $H = H[F]_p$ be a formula in which F occurs as a subformula at position p.

If $\operatorname{pol}(H, p) = 1$ and $\mathcal{A}(F) \leq \mathcal{A}(G)$, then $\mathcal{A}(H[F]_p) \leq \mathcal{A}(H[G]_p)$. If $\operatorname{pol}(H, p) = -1$ and $\mathcal{A}(F) \geq \mathcal{A}(G)$, then $\mathcal{A}(H[F]_p) \leq \mathcal{A}(H[G]_p)$.

Proof. Exercise.

Let Q be a propositional variable not occurring in $H[F]_p$.

Define the formula def(H, p, Q, F) by

- $(Q \to F)$, if pol(H, p) = 1,
- $(F \rightarrow Q)$, if pol(H, p) = -1,
- $(Q \leftrightarrow F)$, if pol(H, p) = 0.

Proposition 2.14 Let Q be a propositional variable not occurring in $H[F]_p$. Then $H[F]_p$ is satisfiable if and only if $H[Q]_p \wedge def(H, p, Q, F)$ is satisfiable.

Proof. (\Rightarrow) Since $H[F]_p$ is satisfiable, there exists a Π -valuation \mathcal{A} such that $\mathcal{A} \models H[F]_p$. Let $\Pi' = \Pi \cup \{Q\}$ and define the Π' -valuation \mathcal{A}' by $\mathcal{A}'(P) = \mathcal{A}(P)$ for $P \in \Pi$ and $\mathcal{A}'(Q) = \mathcal{A}(F)$. Obviously $\mathcal{A}'(\operatorname{def}(H, p, Q, F)) = 1$; moreover $\mathcal{A}'(H[Q]_p) = \mathcal{A}'(H[F]_p) = \mathcal{A}(H[F]_p) = 1$ by Prop. 2.8, so $H[Q]_p \wedge \operatorname{def}(H, p, Q, F)$ is satisfiable.

(\Leftarrow) Let \mathcal{A} be a valuation such that $\mathcal{A} \models H[Q]_p \land \det(H, p, Q, F)$. So $\mathcal{A}(H[Q]_p) = 1$ and $\mathcal{A}(\det(H, p, Q, F)) = 1$. We will show that $\mathcal{A} \models H[F]_p$.

If $\operatorname{pol}(H, p) = 0$, then $\operatorname{def}(H, p, Q, F) = (Q \leftrightarrow F)$, so $\mathcal{A}(Q) = \mathcal{A}(F)$, hence $\mathcal{A}(H[F]_p) = \mathcal{A}(H[Q]_p) = 1$ by Prop. 2.8.

If $\operatorname{pol}(H,p) = 1$, then $\operatorname{def}(H,p,Q,F) = (Q \to F)$, so $\mathcal{A}(Q) \leq \mathcal{A}(F)$. By Prop. 2.13, $\mathcal{A}(H[F]_p) \geq \mathcal{A}(H[Q]_p) = 1$, so $\mathcal{A}(H[F]_p) = 1$.

If $\operatorname{pol}(H,p) = -1$, then $\operatorname{def}(H,p,Q,F) = (F \to Q)$, so $\mathcal{A}(F) \leq \mathcal{A}(Q)$. By Prop. 2.13, $\mathcal{A}(H[F]_p) \geq \mathcal{A}(H[Q]_p) = 1$, so $\mathcal{A}(H[F]_p) = 1$.

Optimized CNF

Not every introduction of a definition for a subformula leads to a smaller CNF.

The number of eventually generated clauses is a good indicator for useful CNF transformations. The functions ν and $\bar{\nu}$ give us an overapproximation for the number of clauses generated by a formula that occurs positively/negatively.

G	u(G)	$\bar{\nu}(G)$
P, \top, \bot	1	1
$F_1 \wedge F_2$	$\nu(F_1) + \nu(F_2)$	$ar{ u}(F_1)ar{ u}(F_2)$
$F_1 \vee F_2$	$ u(F_1) u(F_2)$	$\bar{\nu}(F_1) + \bar{\nu}(F_2)$
$\neg F_1$	$ar{ u}(F_1)$	$ u(F_1)$
$F_1 \to F_2$	$ar{ u}(F_1) u(F_2)$	$\nu(F_1) + \bar{\nu}(F_2)$
$F_1 \leftrightarrow F_2$	$\nu(F_1)\bar{\nu}(F_2) + \bar{\nu}(F_1)\nu(F_2)$	$\nu(F_1)\nu(F_2) + \bar{\nu}(F_1)\bar{\nu}(F_2)$

A better CNF transformation:

Step 1: Exhaustively apply modulo commutativity of \leftrightarrow and associativity/commutativity of \land , \lor :

 $H[(F \wedge \top)]_p \Rightarrow_{OCNF} H[F]_p$ $H[(F \lor \bot)]_p \Rightarrow_{OCNF} H[F]_p$ $H[(F \leftrightarrow \bot)]_p \Rightarrow_{\text{OCNF}} H[\neg F]_p$ $H[(F \leftrightarrow \top)]_p \Rightarrow_{\text{OCNF}} H[F]_p$ $H[(F \lor \top)]_p \Rightarrow_{\text{OCNF}} H[\top]_p$ $H[(F \wedge \bot)]_p \Rightarrow_{\text{OCNF}} H[\bot]_p$ $H[(F \wedge F)]_p \Rightarrow_{\text{OCNF}} H[F]_p$ $H[(F \lor F)]_p \Rightarrow_{\text{OCNF}} H[F]_p$ $H[(F \land (F \lor G))]_p \Rightarrow_{OCNF} H[F]_p$ $H[(F \lor (F \land G))]_p \Rightarrow_{OCNF} H[F]_p$ $H[(F \land \neg F)]_p \Rightarrow_{\text{OCNF}} H[\bot]_p$ $H[(F \lor \neg F)]_p \Rightarrow_{\text{OCNF}} H[\top]_p$ $H[\neg\top]_p \Rightarrow_{\text{OCNF}} H[\bot]_p$ $H[\neg \bot]_p \Rightarrow_{\text{OCNF}} H[\top]_p$ $H[(F \to \bot)]_p \Rightarrow_{\text{OCNF}} H[\neg F]_p$ $H[(F \to \top)]_p \Rightarrow_{\text{OCNF}} H[\top]_p$ $H[(\bot \to F)]_p \Rightarrow_{\text{OCNF}} H[\top]_p$ $H[(\top \to F)]_p \Rightarrow_{\text{OCNF}} H[F]_p$

Step 2: Introduce top-down fresh variables for beneficial subformulas:

$$H[F]_p \Rightarrow_{\text{OCNF}} H[P]_p \land \det(H, p, P, F)$$

where P is new to $H[F]_p$ and $\nu(H[F]_p) > \nu(H[P]_p \wedge \operatorname{def}(H, p, P, F)).$

Remark: Although computing ν is not practical in general, the test $\nu(H[F]_p) > \nu(H[P]_p \land def(H, p, P, F))$ can be computed in constant time.

Step 3: Eliminate equivalences dependent on their polarity:

 $H[F \leftrightarrow G]_p \Rightarrow_{\text{OCNF}} H[(F \to G) \land (G \to F)]_p$

if pol(F, p) = 1 or pol(F, p) = 0.

$$H[F \leftrightarrow G]_p \Rightarrow_{\text{OCNF}} H[(F \land G) \lor (\neg F \land \neg G)]_p$$

if $\operatorname{pol}(F, p) = -1$.

Step 4: Apply steps 2, 3, 4, 5 of \Rightarrow_{CNF}

Remark: The $\Rightarrow_{\text{OCNF}}$ algorithm is already close to a state of the art algorithm, but some additional redundancy tests and simplification mechanisms are missing.