2.5 Improving the CNF Transformation

The goal
“find a formula G in CNF such that F H G”
is unpractical.
But if we relax the requirement to
“find a formula G in CNF such that F = 1 & G = 17

we can get an efficient transformation.

Tseitin Transformation

Proposition 2.12 A formula H|[F|, is satisfiable if and only if H[Q], N (Q < F) is
satisfiable, where () is a new propositional variable that works as an abbreviation for F'.

Satisfiability-preserving CNF transformation (Tseitin 1970):

Use the rule above recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables () and definitions @ < F).

Convert of the resulting conjunction to CNF (this increases the size only by an addi-
tional factor, since each formula @) <> F' yields at most four clauses in the CNF).

Polarity-based CNF Transformation

A further improvement is possible by taking the polarity of the subformula F' into
account.

Proposition 2.13 Let A be a valuation, let F' and G be formulas, and let H = H[F|,
be a formula in which F' occurs as a subformula at position p.

If pol(H,p) =1 and A(F) < A(G), then A(H[F],) < A(H[G],)-
If pol(H,p) =—1 and A(F) > A(G), then A(H[F],) < A(H[G],).

Proof. Exercise. O

21

Let @ be a propositional variable not occurring in H[F],.
Define the formula def(H, p, @, F') by

e (Q— F), if pol(H,p) =1,

o (F— @Q),if pol(H,p) =—1,

o (Q < F),if pol(H,p) =0.

Proposition 2.14 Let () be a propositional variable not occurring in H[F|,. Then
HI[F), is satisfiable if and only if H[Q], A def(H,p,Q, F) is satisfiable.

Proof. (=) Since H[F], is satisfiable, there exists a Il-valuation A such that A =
H[F|,. Let II' = ITU{Q} and define the II'-valuation A’ by A'(P) = A(P) for P € IT and
A(Q) = A(F). Obviously A'(def(H,p, @, F)) = 1; moreover A'(H[Q)],) = A (H[F],) =
A(H[F],) =1 by Prop. 2.8, so H[Q], A def(H, p, Q, F) is satisfiable.

(<) Let A be a valuation such that A = H[Q], A def(H,p,Q, F). So A(H[Q],) =1
and A(def(H,p,Q, F)) = 1. We will show that A = H[F],.

If pol(H,p) =0, then def(H,p,Q, F) = (Q < F), so A(Q) = A(F), hence A(H[F],) =
A(H[Q],) = 1 by Prop. 2.8.

If pol(H,p) = 1, then def(H,p,Q, F) = (Q — F), so A(Q) < A(F). By Prop. 2.13,
A(H[F],) = A(H[Qlp) = 1, so A(H[F],) = 1.

If pol(H,p) = —1, then def(H,p,Q,F) = (F — @), so A(F) < A(Q). By Prop. 2.13,
A(H[F],) = A(H[Qly) = 1, so A(H[F],) =1 O

Optimized CNF

Not every introduction of a definition for a subformula leads to a smaller CNF.

The number of eventually generated clauses is a good indicator for useful CNF trans-
formations.

22

The functions v and v give us an overapproximation for the number of clauses generated

by a formula that occurs positively/negatively.

A better CNF transformation:

Step 1: Exhaustively apply modulo commutativity of <» and associativity /commutativity

of A, V:

H[(FAT)l, =ocne H[F],
H[(FV 1), =ocne H[F],
H[(F < L1)], =ocxe H[2F],
H[(F < T)l, =ocne H[F],
H[(FVT), =ocne H[T],
H[(FA L), =ocne H[L],
H[(FAF)l, =ocne H[F],
H[(FV F)l, =ocve H[F],
H[(FA(FVG))p, =ocene H[F],
H[(FV (FAG)), =ocve H[F],
H[(FA=F)], =ocne H[L],
H[(FV=F)], =ocxe H[T],
H[-Tl, =ocne H[L],

H[-1], =ocne H[T]p
H[(F — 1)], =ocxe H[-F],
H[(F = T)l, =ocxe H[T],
H[(L = F)l, =ocve H[T],
H[(T — F)l, =ocxe H[F],

G v(G) 7(G)
PT, 1 1 1
Fi A F V(FY) + v(Fy) 5(F)o(Fy)
FiV F V(F)u(Fy) o(F) + 0(Fy)
oy o(F) v(F)
F = 5 o(F)v(F) V(FY) + 0(Fy)
Py o By | v(F)5(F) + 0(F)u(F) | v(F)v(EF)+o(F)o(F)

23

Step 2: Introduce top-down fresh variables for beneficial subformulas:
H[F), =ocnr H[P), Adef(H,p, P, F)

where P is new to H|[F], and v(H|[F|,) > v(H[P], Ndef(H,p, P, F)).

Remark: Although computing v is not practical in general, the test v(H[F],) > v(H[P], A
def(H,p, P, F')) can be computed in constant time.

Step 3: Eliminate equivalences dependent on their polarity:

H[F < G, =ocxe H[(F — G) A (G — F)l,

if pol(F,p) =1 or pol(F,p) = 0.

H[F < G], =ocve H[(FAG)V (F A=G)l,

if pol(F,p) = —1.
Step 4: Apply steps 2, 3, 4, 5 of =¢nr

Remark: The =ocnr algorithm is already close to a state of the art algorithm, but some
additional redundancy tests and simplification mechanisms are missing.

24

