
2.5 Improving the CNF Transformation

The goal

“find a formula G in CNF such that F |=| G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ ⇔ G |= ⊥”

we can get an efficient transformation.

Tseitin Transformation

Proposition 2.12 A formula H [F ]p is satisfiable if and only if H [Q]p ∧ (Q ↔ F ) is

satisfiable, where Q is a new propositional variable that works as an abbreviation for F .

Satisfiability-preserving CNF transformation (Tseitin 1970):

Use the rule above recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables Q and definitions Q ↔ F ).

Convert of the resulting conjunction to CNF (this increases the size only by an addi-
tional factor, since each formula Q ↔ F yields at most four clauses in the CNF).

Polarity-based CNF Transformation

A further improvement is possible by taking the polarity of the subformula F into
account.

Proposition 2.13 Let A be a valuation, let F and G be formulas, and let H = H [F ]p
be a formula in which F occurs as a subformula at position p.

If pol(H, p) = 1 and A(F ) ≤ A(G), then A(H [F ]p) ≤ A(H [G]p).

If pol(H, p) =−1 and A(F ) ≥ A(G), then A(H [F ]p) ≤ A(H [G]p).

Proof. Exercise. ✷
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Let Q be a propositional variable not occurring in H [F ]p.

Define the formula def(H, p,Q, F ) by

• (Q → F ), if pol(H, p) = 1,

• (F → Q), if pol(H, p) = −1,

• (Q ↔ F ), if pol(H, p) = 0.

Proposition 2.14 Let Q be a propositional variable not occurring in H [F ]p. Then

H [F ]p is satisfiable if and only if H [Q]p ∧ def(H, p,Q, F ) is satisfiable.

Proof. (⇒) Since H [F ]p is satisfiable, there exists a Π-valuation A such that A |=
H [F ]p. Let Π

′ = Π∪{Q} and define the Π′-valuationA′ byA′(P ) = A(P ) for P ∈ Π and
A′(Q) = A(F ). Obviously A′(def(H, p,Q, F )) = 1; moreover A′(H [Q]p) = A′(H [F ]p) =
A(H [F ]p) = 1 by Prop. 2.8, so H [Q]p ∧ def(H, p,Q, F ) is satisfiable.

(⇐) Let A be a valuation such that A |= H [Q]p ∧ def(H, p,Q, F ). So A(H [Q]p) = 1
and A(def(H, p,Q, F )) = 1. We will show that A |= H [F ]p.

If pol(H, p) = 0, then def(H, p,Q, F ) = (Q ↔ F ), so A(Q) = A(F ), hence A(H [F ]p) =
A(H [Q]p) = 1 by Prop. 2.8.

If pol(H, p) = 1, then def(H, p,Q, F ) = (Q → F ), so A(Q) ≤ A(F ). By Prop. 2.13,
A(H [F ]p) ≥ A(H [Q]p) = 1, so A(H [F ]p) = 1.

If pol(H, p) = −1, then def(H, p,Q, F ) = (F → Q), so A(F ) ≤ A(Q). By Prop. 2.13,
A(H [F ]p) ≥ A(H [Q]p) = 1, so A(H [F ]p) = 1. ✷

Optimized CNF

Not every introduction of a definition for a subformula leads to a smaller CNF.

The number of eventually generated clauses is a good indicator for useful CNF trans-
formations.
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The functions ν and ν̄ give us an overapproximation for the number of clauses generated
by a formula that occurs positively/negatively.

G ν(G) ν̄(G)

P,⊤,⊥ 1 1

F1 ∧ F2 ν(F1) + ν(F2) ν̄(F1)ν̄(F2)

F1 ∨ F2 ν(F1)ν(F2) ν̄(F1) + ν̄(F2)

¬F1 ν̄(F1) ν(F1)

F1 → F2 ν̄(F1)ν(F2) ν(F1) + ν̄(F2)

F1 ↔ F2 ν(F1)ν̄(F2) + ν̄(F1)ν(F2) ν(F1)ν(F2)+ν̄(F1)ν̄(F2)

A better CNF transformation:

Step 1: Exhaustively apply modulo commutativity of↔ and associativity/commutativity
of ∧, ∨:

H [(F ∧ ⊤)]p ⇒OCNF H [F ]p

H [(F ∨ ⊥)]p ⇒OCNF H [F ]p

H [(F ↔ ⊥)]p ⇒OCNF H [¬F ]p

H [(F ↔ ⊤)]p ⇒OCNF H [F ]p

H [(F ∨ ⊤)]p ⇒OCNF H [⊤]p

H [(F ∧ ⊥)]p ⇒OCNF H [⊥]p

H [(F ∧ F )]p ⇒OCNF H [F ]p

H [(F ∨ F )]p ⇒OCNF H [F ]p

H [(F ∧ (F ∨G))]p ⇒OCNF H [F ]p

H [(F ∨ (F ∧G))]p ⇒OCNF H [F ]p

H [(F ∧ ¬F )]p ⇒OCNF H [⊥]p

H [(F ∨ ¬F )]p ⇒OCNF H [⊤]p

H [¬⊤]p ⇒OCNF H [⊥]p

H [¬⊥]p ⇒OCNF H [⊤]p

H [(F → ⊥)]p ⇒OCNF H [¬F ]p

H [(F → ⊤)]p ⇒OCNF H [⊤]p

H [(⊥ → F )]p ⇒OCNF H [⊤]p

H [(⊤ → F )]p ⇒OCNF H [F ]p
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Step 2: Introduce top-down fresh variables for beneficial subformulas:

H [F ]p ⇒OCNF H [P ]p ∧ def(H, p, P, F )

where P is new to H [F ]p and ν(H [F ]p) > ν(H [P ]p ∧ def(H, p, P, F )).

Remark: Although computing ν is not practical in general, the test ν(H [F ]p) > ν(H [P ]p ∧
def(H, p, P, F )) can be computed in constant time.

Step 3: Eliminate equivalences dependent on their polarity:

H [F ↔ G]p ⇒OCNF H [(F → G) ∧ (G → F )]p

if pol(F, p) = 1 or pol(F, p) = 0.

H [F ↔ G]p ⇒OCNF H [(F ∧G) ∨ (¬F ∧ ¬G)]p

if pol(F, p) = −1.

Step 4: Apply steps 2, 3, 4, 5 of ⇒CNF

Remark: The ⇒OCNF algorithm is already close to a state of the art algorithm, but some
additional redundancy tests and simplification mechanisms are missing.
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