
Automated Reasoning I∗

Uwe Waldmann

Winter Term 2015/2016

Topics of the Course

Preliminaries

abstract reduction systems
well-founded orderings

Propositional logic

syntax, semantics
calculi: DPLL-procedure, . . .
implementation: 2-watched literals, clause learning

First-order predicate logic

syntax, semantics, model theory, . . .
calculi: resolution, tableaux, . . .
implementation: sharing, indexing

First-order predicate logic with equality

term rewriting systems
calculi: Knuth-Bendix completion, dependency pairs

Emphasis on:

logics and their properties,

proof systems for these logics and their properties:
soundness, completeness, complexity, implementation.

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a research paper – neither stylistically
nor typographically.
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1 Preliminaries

Before we start with the main subjects of the lecture, we repeat some prerequisites
from mathematics and computer science and introduce some tools that we will need
throughout the lecture.

1.1 Mathematical Prerequisites

N = {0, 1, 2, . . .} is the set of natural numbers (including 0).

Z, Q, R denote the integers, rational numbers and the real numbers, respectively.

Relations

An n-ary relation R over some set M is a subset of Mn: R ⊆Mn.

For two n-ary relations R,Q over some set M , their union (∪) or intersection (∩) is
again an n-ary relation, where

R ∪Q := { (m1, . . . , mn) ∈Mn | (m1, . . . , mn) ∈ R or (m1, . . . , mn) ∈ Q }

R ∩Q := { (m1, . . . , mn) ∈Mn | (m1, . . . , mn) ∈ R and (m1, . . . , mn) ∈ Q }.

A relation Q is a subrelation of a relation R if Q ⊆ R.

We often use predicate notation for relations:

Instead of (m1, . . . , mn) ∈ R we write R(m1, . . . , mn), and say that R(m1, . . . , mn) holds
or is true.

For binary relations, we often use infix notation, so
(m,m′) ∈ < ⇔ <(m,m′) ⇔ m < m′.

Words

Given a non-empty alphabet Σ, the set Σ∗ of finite words over Σ is defined inductively
by

(i) the empty word ε is in Σ∗,

(ii) if u ∈ Σ∗ and a ∈ Σ then ua is in Σ∗.

The set of non-empty finite words Σ+ is Σ∗ \ {ε}.

The concatenation of two words u, v ∈ Σ∗ is denoted by uv.
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The length |u| of a word u ∈ Σ∗ is defined by

(i) |ε| := 0,

(ii) |ua| := |u|+ 1 for any u ∈ Σ∗ and a ∈ Σ.

1.2 Abstract Reduction Systems

Literature: Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge
Univ. Press, 1998, Chapter 2.

Througout the lecture, we will have to work with reduction systems,

on the object level, in particular in the section on equality,

and on the meta level, i. e., to describe deduction calculi.

An abstract reduction system is a pair (A,→), where

A is a non-empty set,

→ ⊆ A× A is a binary relation on A.

The relation → is usually written in infix notation, i. e., a→ b instead of (a, b) ∈ →.

Let →′ ⊆ A × B and →′′ ⊆ B × C be two binary relations. Then the composition of
→′ and →′′ is the binary relation (→′ ◦→′′) ⊆ A× C defined by

a (→′ ◦→′′) c if and only if a→′ b and b→′′ c for some b ∈ B.

→0 = { (a, a) | a ∈ A } identity
→i+1 = →i ◦→ i+ 1-fold composition
→+ =

⋃

i>0
→i transitive closure

→∗ =
⋃

i≥0
→i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure
← = →−1 = { (b, c) | c→ b } inverse
↔ = →∪← symmetric closure
↔+ = (↔)+ transitive symmetric closure
↔∗ = (↔)∗ refl. trans. symmetric closure

or equivalence closure

b ∈ A is reducible, if there is a c such that b→ c.

b is in normal form (irreducible), if it is not reducible.

c is a normal form of b, if b→∗ c and c is in normal form.
Notation: c = b↓ (if the normal form of b is unique).
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A relation → is called

terminating, if there is no infinite descending chain b0 → b1 → b2 → . . . .

normalizing, if every b ∈ A has a normal form.

Lemma 1.1 If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.

1.3 Orderings

Important properties of binary relations:

Let M 6= ∅. A binary relation R ⊆ M ×M is called

reflexive, if R(x, x) for all x ∈M ,

irreflexivity, if ¬R(x, x) for all x ∈M ,

antisymmetric, if R(x, y) and R(y, x) imply x = y for all x, y ∈M ,

transitive, if R(x, y) and R(y, z) imply R(x, z) for all x, y, z ∈M ,

total, if R(x, y) or R(y, x) or x = y for all x, y ∈M .

A strict partial ordering ≻ on a set M 6= ∅ is a transitive and irreflexive binary relation
on M .

Notation:
≺ for the inverse relation ≻−1

� for the reflexive closure (≻ ∪=) of ≻

An a ∈M is called minimal, if there is no b in M with a ≻ b.

An a ∈M is called smallest, if b ≻ a for all b ∈M \ {a}.

Analogously:

An a ∈M is called maximal, if there is no b in M with a ≺ b.

An a ∈M is called largest, if b ≺ a for all b ∈M \ {a}.
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Well-Foundedness

Termination of reduction systems is strongly related to the concept of well-founded
orderings.

A strict partial ordering ≻ on M is called well-founded (Noetherian), if there is no
infinite descending chain a0 ≻ a1 ≻ a2 ≻ . . . with ai ∈M .

Well-Foundedness and Termination

Lemma 1.2 If > is a well-founded partial ordering and→ ⊆ >, then→ is terminating.

Lemma 1.3 If → is a terminating binary relation over A, then →+ is a well-founded
partial ordering.

Proof. Transitivity of →+ is obvious; irreflexivity and well-foundedness follow from
termination of →. ✷

Well-Founded Orderings: Examples

Natural numbers. (N, >)

Lexicographic orderings. Let (M1,≻1), (M2,≻2) be well-founded orderings. Then let
their lexicographic combination

≻ = (≻1,≻2)lex

on M1 ×M2 be defined as

(a1, a2) ≻ (b1, b2) :⇔ a1 ≻1 b1 or (a1 = b1 and a2 ≻2 b2)

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).

Length-based ordering on words. For alphabets Σ with a well-founded ordering >Σ, the
relation ≻ defined as

w ≻ w′ :⇔ |w| > |w′| or (|w| = |w′| and w >Σ,lex w′)

is a well-founded ordering on the set Σ∗ of finite words over the alphabet Σ (Ex-
ercise).

Counterexamples:
(Z, >)
(N, <)
the lexicographic ordering on Σ∗
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Basic Properties of Well-Founded Orderings

Lemma 1.4 (M,≻) is well-founded if and only if every ∅ ⊂ M ′ ⊆ M has a minimal
element.

Proof. (i) “⇐”: Suppose that (M,≻) is not well-founded. Then there is an infinite
descending chain a0 ≻ a1 ≻ a2 ≻ . . . with ai ∈M . Consequently, the subset M ′ = { ai |
i ∈ N }, does not have a minimal element.

(ii) “⇒”: Suppose that the non-empty subset M ′ ⊆M does not have a minimal element.
Choose a0 ∈ M ′ arbitrarily. Since for every ai ∈ M ′ there is a smaller ai+1 ∈ M ′

(otherwise ai would be minimal in M ′), there is an infinite descending chain a0 ≻ a1 ≻
a2 ≻ . . . ✷

Lemma 1.5 (M1,≻1) and (M2,≻2) are well-founded if and only if (M1 ×M2, ≻) with
≻ = (≻1,≻2)lex is well-founded.

Proof. (i) “⇒”: Suppose (M1 ×M2, ≻) is not well-founded. Then there is an infinite
sequence (a0, b0) ≻ (a1, b1) ≻ (a2, b2) ≻ . . . .

Let A = { ai | i ≥ 0 } ⊆ M1. Since (M1,≻1) is well-founded, A has a minimal element
an. But then B = { bi | i ≥ n } ⊆ M2 can not have a minimal element, contradicting
the well-foundedness of (M2,≻2).

(ii) “⇐”: obvious. ✷

Monotone Mappings

Let (M1, >1) and (M2, >2) be strict partial orderings. A mapping ϕ : M1 →M2 is called
monotone, if a >1 b implies ϕ(a) >2 ϕ(b) for all a, b ∈M1.

Lemma 1.6 If ϕ is a monotone mapping from (M1, >1) to (M2, >2) and (M2, >2) is
well-founded, then (M1, >1) is well-founded.
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Noetherian Induction

Theorem 1.7 (Noetherian Induction) Let (M,≻) be a well-founded ordering, let Q
be a property of elements of M .

If for all m ∈M the implication

if Q(m′) for all m′ ∈ M such that m ≻ m′,1

then Q(m).2

is satisfied, then the property Q(m) holds for all m ∈M .

Proof. Let X = {m ∈ M | Q(m) false }. Suppose, X 6= ∅. Since (M,≻) is well-
founded, X has a minimal element m1. Hence for all m

′ ∈M with m′ ≺ m1 the property
Q(m′) holds. On the other hand, the implication which is presupposed for this theorem
holds in particular also for m1, hence Q(m1) must be true so that m1 can not be in X .
Contradiction. ✷

1.4 Multisets

Let M be a set. A multiset S over M is a mapping S : M → N. We interpret S(m) as
the number of occurrences of elements m of the base set M within the multiset S.

Example. S = {a, a, a, b, b} is a multiset over {a, b, c}, where S(a) = 3, S(b) = 2,
S(c) = 0.

We say that m is an element of S, if S(m) > 0.

We use set notation (∈, ⊆, ∪, ∩, etc.) with analogous meaning also for multisets, e. g.,

m ∈ S :⇔ S(m) > 0

(S1 ∪ S2)(m) := S1(m) + S2(m)

(S1 ∩ S2)(m) := min{S1(m), S2(m)}

(S1 − S2)(m) :=

{

S1(m)− S2(m) if S1(m) ≥ S2(m)
0 otherwise

S1 ⊆ S2 :⇔ S1(m) ≤ S2(m) for all m ∈M

A multiset S is called finite, if

|{m ∈M | S(m) > 0 }| <∞.

From now on we only consider finite multisets.

1induction hypothesis
2induction step
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Multiset Orderings

Let (M,≻) be a strict partial ordering. The multiset extension of ≻ to multisets over
M is defined by

S1 ≻mul S2 if and only if

there exist multisets X and Y over M such that

∅ 6= X ⊆ S1,

S2 = (S1 −X) ∪ Y

∀y ∈ Y ∃x ∈ X : x ≻ y

Lemma 1.8 (König’s Lemma) Every finitely branching tree with infinitely many
nodes contains an infinite path.

Theorem 1.9
(a) ≻mul is a strict partial ordering.
(b) ≻ is well-founded if and only if ≻mul is well-founded.
(c) ≻ is total if and only if ≻mul is total.

Proof. see Baader and Nipkow, page 22–24. ✷

There are several equivalent ways to characterize the multiset extension of a strict partial
ordering.

Theorem 1.10 S1 ≻mul S2 if and only if

S1 6= S2 and

∀m ∈M :
(

S2(m) > S1(m)

⇒ ∃m′ ∈M : m′ ≻ m and S1(m
′) > S2(m

′)
)

Proof. see Baader and Nipkow, page 24–26. ✷

Theorem 1.11 ≻mul is the transitive closure of the relation ≻1
mul defined by

S1 ≻
1
mul S2 if and only if

there exists x ∈ S1 and a multiset Y over M such that

S2 = (S1 − {x}) ∪ Y

∀y ∈ Y : x ≻ y

Proof. Exercise. ✷
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