Assignment 1 (Abstract Reduction Systems) (4 + 6 + 6 = 16 points)

Let (A, \to) be an abstract reduction system such that every element of A has exactly one normal form w.r.t. \to . For every $b \in A$ define L(b) as the minimal $n \in \mathbb{N}$ such that $b \to^n b'$ and b' is in normal form w.r.t. \to . Define the binary relation \Rightarrow over A by $b \Rightarrow c$ if and only if $b \to c$ and L(b) > L(c).

Part (a) Give an example that shows that $\rightarrow \neq \Rightarrow$.

Part (b) Show that for every $b \in A$ we have $b \Rightarrow^* b'$, where b' is the normal form of b w.r.t. \rightarrow .

Part (c) Use part (b) to show that $\leftrightarrow^* = \Leftrightarrow^*$.

Let $\Sigma = (\Omega, \Pi)$ be a first-order signature with $\Omega = \{b/0, f/1\}$ and $\Pi = \{P/1\}$. Let F be the Σ -formula

$$\neg P(b) \land P(f(f(b))) \land \forall x (\neg P(x) \lor P(f(x))).$$

Decide for each of the following statements whether they are true or false:

- (1) There is a Σ -model \mathcal{A} of F such that $U_{\mathcal{A}} = \{7, 8, 9\}$.
- (2) There is a Σ -model \mathcal{A} of F such that $f_{\mathcal{A}}(a) = a$ for every $a \in U_{\mathcal{A}}$.
- (3) F has exactly four Σ -models.
- (4) Every Σ -model of F is a model of $\exists x P(x)$.
- (5) Every Σ -model of F is a model of $\forall x P(f(f(x)))$.
- (6) There are infinitely many Herbrand interpretations over Σ .
- (7) There is a Herbrand model of F over Σ whose universe has exactly two elements.
- (8) There is a Herbrand model of F over Σ with an infinite universe.
- (9) F has exactly two Herbrand models over Σ .

(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least five correct answers to get any points for this assignment. Missing answers count like false answers.)

Let $\Sigma = (\Omega, \emptyset)$, let \mathcal{A} and \mathcal{B} be Σ -algebras. A function $\phi : U_{\mathcal{A}} \to U_{\mathcal{B}}$ is called a Σ -homomorphism, if for all $f/n \in \Omega$ and all $a_1, \ldots, a_n \in U_{\mathcal{A}}$, we have $\phi(f_{\mathcal{A}}(a_1, \ldots, a_n)) = f_{\mathcal{B}}(\phi(a_1), \ldots, \phi(a_n))$. Let $\forall \vec{x}(s \approx t)$ be a universally quantified Σ -equation. Prove: If $\phi : U_{\mathcal{A}} \to U_{\mathcal{B}}$ is a surjective (i.e., onto) Σ -homomorphism, and $\mathcal{A} \models \forall \vec{x}(s \approx t)$, then $\mathcal{B} \models \forall \vec{x}(s \approx t)$.

(Note: Even though this was not explicitly said during the lecture, you may use Lemma 3.21 also for first-order logic with equality.)

Assignment 4 (Redundancy)

(12 points)

Let $\Sigma = (\{f/1, b/0, c/0\}, \{P/1\})$; let N be the following set of Σ -clauses:

$$P(b) \tag{1}$$

$$P(f(c)) \tag{2}$$

$$P(f(c)) \qquad (2)$$
$$\neg P(x) \lor P(f(x)) \qquad (3)$$

Let \succ be a Knuth-Bendix ordering with weight 1 for all function and predicate symbols and variables and the precedence P > f > b > c. The ordering is extended to ground literals and ground clauses as usual. Give the smallest non-empty ground Σ -clauses C_1, C_2, C_3, C_4 such that

- (a) $C_1 \in G_{\Sigma}(N)$ and $C_1 \in \text{Red}(N)$,
- (b) $C_2 \in G_{\Sigma}(N)$ and $C_2 \notin \text{Red}(N)$,
- (c) $C_3 \notin G_{\Sigma}(N)$ and $C_3 \in \text{Red}(N)$,
- (d) $C_4 \notin G_{\Sigma}(N)$ and $C_4 \notin \text{Red}(N)$.

Assignment 5 (Tableaux)

$$(7 + 7 = 14 \text{ points})$$

Check whether the following propositional formulas are valid or not using semantic tableaux. Give a brief explanation. (Use exactly the expansion rules given in the lecture. Do not use shortcuts; do not convert the formulas to NNF, CNF, or DNF.)

Part (a)

$$(P \to Q) \to ((P \vee R) \to (Q \vee R))$$

Part (b)

$$(P \lor Q) \to (P \land Q)$$

Assignment 6 (Knuth-Bendix Completion)

(14 points)

Let E be the following set of equations over $\Sigma = (\{f/2, g/1, h/1, b/0\}, \emptyset)$.

$$f(g(x), x) \approx b$$
 (1)

$$f(x,b) \approx x$$
 (2)

$$q(h(x)) \approx x$$
 (3)

Apply the Knuth-Bendix completion procedure to E and transform it into a finite convergent term rewrite system; use a Knuth-Bendix ordering with weight 1 for all function symbols and variables and the precedence f > g >h > b. Use a reasonable strategy.