
2.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two truth values “true”
and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

Truth Value of a Formula in A

Given a Π-valuation A, its extension to formulas A∗ : FΠ → {0, 1} is defined inductively
as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F) = 1 −A∗(F)

A∗(F ∧ G) = min(A∗(F),A∗(G))

A∗(F ∨ G) = max(A∗(F),A∗(G))

A∗(F → G) = max(1 −A∗(F),A∗(G))

A∗(F ↔ G) = if A∗(F) = A∗(G) then 1 else 0

For simplicity, the extension A∗ of A is usually also denoted by A.

13

2.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable if there exists an A such that A |= F . Otherwise F is called
unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all Π-valuations
A we have A |= F ⇒ A |= G.

F and G are called equivalent, written F |=| G, if for all Π-valuations A we have
A |= F ⇔ A |= G.

Proposition 2.3 F |= G if and only if |= (F → G).

Proof. (⇒) Suppose that F entails G. Let A be an arbitrary Π-valuation. We have to
show that A |= F → G. If A(F) = 1, then A(G) = 1 (since F |= G), and hence A(F →
G) = max(1− 1, 1) = 1. Otherwise A(F) = 0, then A(F → G) = max(1− 0,A(G)) = 1
independently of A(G). In both cases, A |= F → G.

(⇐) Suppose that F does not entail G. Then there exists a Π-valuation A such that
A |= F , but not A |= G. Consequently, A(F → G) = max(1 − A∗(F),A∗(G)) =
max(1 − 1, 0) = 0, so (F → G) does not hold in A. 2

Proposition 2.4 F |=| G if and only if |= (F ↔ G).

Proof. Analogously to Prop. 2.3. 2

Entailment is extended to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:
if A |= G for all G ∈ N , then A |= F .

Note: Formulas are always finite objects; but sets of formulas may be infinite. There-
fore, it is in general not possible to replace a set of formulas by the conjunction of its
elements.

14

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 2.5 F is valid if and only if ¬F is unsatisfiable.

Proof. (⇒) If F is valid, then A(F) = 1 for every valuation A. Hence A(¬F) =
1 −A(F) = 0 for every valuation A, so ¬F is unsatisfiable.

(⇐) Analogously. 2

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

In a similar way, entailment N |= F can be reduced to unsatisfiability:

Proposition 2.6 N |= F if and only if N ∪ {¬F} is unsatisfiable.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, A(F)
depends only on the values of those finitely many variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to check 2n valuations
to see whether F is satisfiable or not ⇒ truth table.

So the satisfiability problem is clearly decidable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check
the satisfiability of a formula. (later more)

15

Substitution Theorem

Proposition 2.7 Let F and G be equivalent formulas, let H = H [F]p be a formula in
which F occurs as a subformula at position p.

Then H [F]p is equivalent to H [G]p.

Proof. The proof proceeds by induction over the formula structure of H .

Each of the formulas ⊥, ⊤, and P for P ∈ Π contains only one subformula, namely
itself. Hence, if H = H [F]ε equals ⊥, ⊤, or P , then H [F]ε = F , H [G]ε = G, and we are
done by assumption.

If H = H1 ∧H2, then either p = ε (this case is treated as above), or F is a subformula of
H1 or H2 at position 1p′ or 2p′, respectively. Without loss of generality, assume that F

is a subformula of H1, so H = H1[F]p′ ∧ H2. By the induction hypothesis, H1[F]p′ and
H1[G]p′ are equivalent. Hence, for any valuation A, A(H [F]1p′) = A(H1[F]p′ ∧ H2) =
min(A(H1[F]p′),A(H2)) = min(A(H1[G]p′),A(H2)) = A(H1[G]p′ ∧ G2) = A(H [G]1p′).

The other boolean connectives are handled analogously. 2

Some Important Equivalences

Proposition 2.8 The following equivalences are valid for all formulas F, G, H :

(F ∧ F) ↔ F

(F ∨ F) ↔ F (Idempotency)
(F ∧ G) ↔ (G ∧ F)
(F ∨ G) ↔ (G ∨ F) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)
(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))
(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)
(¬¬F) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)
¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology
(F ∨ G) ↔ ⊤, if G is a tautology
(F ∧ G) ↔ ⊥, if G is unsatisfiable
(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)

(F ↔ G) ↔ ((F → G) ∧ (G → F)) (Equivalence)
(F → G) ↔ (¬F ∨ G) (Implication)

16

2.4 Normal Forms

We define conjunctions of formulas as follows:
∧

0

i=1
Fi = ⊤.

∧
1

i=1
Fi = F1.

∧n+1

i=1
Fi =

∧n

i=1
Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1
Fi = ⊥.

∨1

i=1
Fi = F1.

∨n+1

i=1
Fi =

∨n

i=1
Fi ∨ Fn+1.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable ¬P .

A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction
of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of
literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of
complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions
contains a pair of complementary literals P and ¬P .

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF
formulas is known to be coNP-complete.

17

Conversion to CNF/DNF

Proposition 2.9 For every formula there is an equivalent formula in CNF (and also an
equivalent formula in DNF).

Proof. We describe a (naive) algorithm to convert a formula to CNF.

Apply the following rules as long as possible (modulo associativity and commutativity
of ∧ and ∨):

Step 1: Eliminate equivalences:

H [F ↔ G]p ⇒CNF H [(F → G) ∧ (G → F)]p

Step 2: Eliminate implications:

H [F → G]p ⇒CNF H [¬F ∨ G]p

Step 3: Push negations downward:

H [¬(F ∨ G)]p ⇒CNF H [¬F ∧ ¬G]p

H [¬(F ∧ G)]p ⇒CNF H [¬F ∨ ¬G]p

Step 4: Eliminate multiple negations:

H [¬¬F]p ⇒CNF H [F]p

Step 5: Push disjunctions downward:

H [(F ∧ F ′) ∨ G]p ⇒CNF H [(F ∨ G) ∧ (F ′ ∨ G)]p

Step 6: Eliminate ⊤ and ⊥:

H [F ∧ ⊤]p ⇒CNF H [F]p

H [F ∧ ⊥]p ⇒CNF H [⊥]p

H [F ∨ ⊤]p ⇒CNF H [⊤]p

H [F ∨ ⊥]p ⇒CNF H [F]p

H [¬⊥]p ⇒CNF H [⊤]p

H [¬⊤]p ⇒CNF H [⊥]p

18

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and 5 are a bit more
complicated.

For step 1, we can prove termination in the following way: We define a function µ1 from
formulas to positive integers such that µ1(⊥) = µ1(⊤) = µ1(P) = 1, µ1(¬F) = µ1(F),
µ1(F ∧ G) = µ1(F ∨ G) = µ1(F → G) = µ1(F) + µ1(G), and µ1(F ↔ G) = 2µ1(F) +
2µ1(G) + 1. Observe that µ1 is constructed in such a way that µ1(F) > µ1(G) implies
µ1(H [F]) > µ1(H [G]) for all formulas F , G, and H . Using this property, we can show
that whenever a formula H ′ is the result of applying the rule of step 1 to a formula
H , then µ1(H) > µ1(H

′). Since µ1 takes only positive integer values, step 1 must
terminate.

Termination of steps 3 and 5 is proved similarly. For step 3, we use function µ2 from
formulas to positive integers such that µ2(⊥) = µ2(⊤) = µ2(P) = 1, µ2(¬F) = 2µ2(F),
µ2(F ∧G) = µ2(F ∨G) = µ2(F → G) = µ2(F ↔ G) = µ2(F) + µ2(G) + 1. Whenever a
formula H ′ is the result of applying a rule of step 3 to a formula H , then µ2(H) > µ2(H

′).
Since µ2 takes only positive integer values, step 3 must terminate.

For step 5, we use a function µ3 from formulas to positive integers such that µ3(⊥) =
µ3(⊤) = µ3(P) = 1, µ3(¬F) = µ3(F) + 1, µ3(F ∧ G) = µ3(F → G) = µ3(F ↔ G) =
µ3(F) + µ3(G) + 1, and µ3(F ∨ G) = 2µ3(F)µ3(G). Again, if a formula H ′ is the result
of applying a rule of step 5 to a formula H , then µ3(H) > µ3(H

′). Since µ3 takes only
positive integer values, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions
have to be pushed downward in step 5. 2

Negation Normal Form (NNF)

The formula after application of Step 4 is said to be in Negation Normal Form, i.e., it
contains neither → nor ↔ and negation symbols only occur in front of propositional
variables (atoms).

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the
size of the original one.

19

Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that F |=| G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ ⇔ G |= ⊥”

we can get an efficient transformation.

Idea: A formula H [F]p is satisfiable if and only if H [P] ∧ (P ↔ F) is satisfiable (where
P is a new propositional variable that works as an abbreviation for F).

We can use this rule recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional
factor (each formula P ↔ F gives rise to at most one application of the distributivity
law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into
account.

Let P be a propositional variable not occurring in H [F]p.

Define the formula def(H, p, P, F) by

• (P → F), if pol(H, p) = 1,

• (F → P), if pol(H, p) = −1,

• (P ↔ F), if pol(H, p) = 0.

Proposition 2.10 Let P be a propositional variable not occurring in H [F]p. Then
H [F]p is satisfiable if and only if H [P]p ∧ def(H, p, P, F) is satisfiable.

Proof. Exercise. 2

20

The number of eventually generated clauses is a good indicator for useful CNF trans-
formations.

The functions ν and ν̄ give us an overapproximation for the number of clauses generated
by a formula that occurs positively/negatively.

G ν(G) ν̄(G)

F1 ∧ F2 ν(F1) + ν(F2) ν̄(F1)ν̄(F2)
F1 ∨ F2 ν(F1)ν(F2) ν̄(F1) + ν̄(F2)
F1 → F2 ν̄(F1)ν(F2) ν(F1) + ν̄(F2)
F1 ↔ F2 ν(F1)ν̄(F2) + ν̄(F1)ν(F2) ν(F1)ν(F2) + ν̄(F1)ν̄(F2)
¬F1 ν̄(F1) ν(F1)

P,⊤,⊥ 1 1

Optimized CNF

A better CNF transformation:

Step 1: Exhaustively apply modulo commutativity of ↔ and associativity/commutativity
of ∧, ∨:

H [(F ∧ ⊤)]p ⇒OCNF H [F]p

H [(F ∨ ⊥)]p ⇒OCNF H [F]p

H [(F ↔ ⊥)]p ⇒OCNF H [¬F]p

H [(F ↔ ⊤)]p ⇒OCNF H [F]p

H [(F ∨ ⊤)]p ⇒OCNF H [⊤]p

H [(F ∧ ⊥)]p ⇒OCNF H [⊥]p

H [(F ∧ F)]p ⇒OCNF H [F]p

H [(F ∨ F)]p ⇒OCNF H [F]p

H [(F ∧ (F ∨ G))]p ⇒OCNF H [F]p

H [(F ∨ (F ∧ G))]p ⇒OCNF H [F]p

H [(F ∧ ¬F)]p ⇒OCNF H [⊥]p

H [(F ∨ ¬F)]p ⇒OCNF H [⊤]p

H [¬⊤]p ⇒OCNF H [⊥]p

H [¬⊥]p ⇒OCNF H [⊤]p

H [(F → ⊥)]p ⇒OCNF H [¬F]p

H [(F → ⊤)]p ⇒OCNF H [⊤]p

H [(⊥ → F)]p ⇒OCNF H [⊤]p

H [(⊤ → F)]p ⇒OCNF H [F]p

21

Step 2: Introduce top-down fresh variables for beneficial subformulas:

H [F]p ⇒OCNF H [P]p ∧ def(H, p, P, F)

where P is new to H [F]p and ν(H [F]p) > ν(H [P]p ∧ def(H, p, P, F)).

Remark: Although computing ν is not practical in general, the test ν(H [F]p) > ν(H [P]p ∧
def(H, p, P, F)) can be computed in constant time.

Step 3: Eliminate equivalences dependent on their polarity:

H [F ↔ G]p ⇒OCNF H [(F → G) ∧ (G → F)]p

if pol(F, p) = 1 or pol(F, p) = 0.

H [F ↔ G]p ⇒OCNF H [(F ∧ G) ∨ (¬F ∧ ¬G)]p

if pol(F, p) = −1.

Step 4: Apply steps 2, 3, 4, 5 of ⇒CNF

Remark: The ⇒OCNF algorithm is already close to a state of the art algorithm, but some
additional redundancy tests and simplification mechanisms are missing.

22

