
2.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two truth values “true”
and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

Truth Value of a Formula in A

Given a Π-valuation A, its extension to formulas A∗ : FΠ → {0, 1} is defined inductively
as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P ) = A(P )

A∗(¬F ) = 1 −A∗(F )

A∗(F ∧ G) = min(A∗(F ),A∗(G))

A∗(F ∨ G) = max(A∗(F ),A∗(G))

A∗(F → G) = max(1 −A∗(F ),A∗(G))

A∗(F ↔ G) = if A∗(F ) = A∗(G) then 1 else 0

For simplicity, the extension A∗ of A is usually also denoted by A.
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2.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F ) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable if there exists an A such that A |= F . Otherwise F is called
unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written F |= G, if for all Π-valuations
A we have A |= F ⇒ A |= G.

F and G are called equivalent, written F |=| G, if for all Π-valuations A we have
A |= F ⇔ A |= G.

Proposition 2.3 F |= G if and only if |= (F → G).

Proof. (⇒) Suppose that F entails G. Let A be an arbitrary Π-valuation. We have to
show that A |= F → G. If A(F ) = 1, then A(G) = 1 (since F |= G), and hence A(F →
G) = max(1− 1, 1) = 1. Otherwise A(F ) = 0, then A(F → G) = max(1− 0,A(G)) = 1
independently of A(G). In both cases, A |= F → G.

(⇐) Suppose that F does not entail G. Then there exists a Π-valuation A such that
A |= F , but not A |= G. Consequently, A(F → G) = max(1 − A∗(F ),A∗(G)) =
max(1 − 1, 0) = 0, so (F → G) does not hold in A. 2

Proposition 2.4 F |=| G if and only if |= (F ↔ G).

Proof. Analogously to Prop. 2.3. 2

Entailment is extended to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:
if A |= G for all G ∈ N , then A |= F .

Note: Formulas are always finite objects; but sets of formulas may be infinite. There-
fore, it is in general not possible to replace a set of formulas by the conjunction of its
elements.
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 2.5 F is valid if and only if ¬F is unsatisfiable.

Proof. (⇒) If F is valid, then A(F ) = 1 for every valuation A. Hence A(¬F ) =
1 −A(F ) = 0 for every valuation A, so ¬F is unsatisfiable.

(⇐) Analogously. 2

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

In a similar way, entailment N |= F can be reduced to unsatisfiability:

Proposition 2.6 N |= F if and only if N ∪ {¬F} is unsatisfiable.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, A(F )
depends only on the values of those finitely many variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to check 2n valuations
to see whether F is satisfiable or not ⇒ truth table.

So the satisfiability problem is clearly decidable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check
the satisfiability of a formula. (later more)
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Substitution Theorem

Proposition 2.7 Let F and G be equivalent formulas, let H = H [F ]p be a formula in
which F occurs as a subformula at position p.

Then H [F ]p is equivalent to H [G]p.

Proof. The proof proceeds by induction over the formula structure of H .

Each of the formulas ⊥, ⊤, and P for P ∈ Π contains only one subformula, namely
itself. Hence, if H = H [F ]ε equals ⊥, ⊤, or P , then H [F ]ε = F , H [G]ε = G, and we are
done by assumption.

If H = H1 ∧H2, then either p = ε (this case is treated as above), or F is a subformula of
H1 or H2 at position 1p′ or 2p′, respectively. Without loss of generality, assume that F

is a subformula of H1, so H = H1[F ]p′ ∧ H2. By the induction hypothesis, H1[F ]p′ and
H1[G]p′ are equivalent. Hence, for any valuation A, A(H [F ]1p′) = A(H1[F ]p′ ∧ H2) =
min(A(H1[F ]p′),A(H2)) = min(A(H1[G]p′),A(H2)) = A(H1[G]p′ ∧ G2) = A(H [G]1p′).

The other boolean connectives are handled analogously. 2

Some Important Equivalences

Proposition 2.8 The following equivalences are valid for all formulas F, G, H :

(F ∧ F ) ↔ F

(F ∨ F ) ↔ F (Idempotency)
(F ∧ G) ↔ (G ∧ F )
(F ∨ G) ↔ (G ∨ F ) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)
(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))
(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)
(¬¬F ) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)
¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology
(F ∨ G) ↔ ⊤, if G is a tautology
(F ∧ G) ↔ ⊥, if G is unsatisfiable
(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)

(F ↔ G) ↔ ((F → G) ∧ (G → F )) (Equivalence)
(F → G) ↔ (¬F ∨ G) (Implication)
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2.4 Normal Forms

We define conjunctions of formulas as follows:
∧

0

i=1
Fi = ⊤.

∧
1

i=1
Fi = F1.

∧n+1

i=1
Fi =

∧n

i=1
Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1
Fi = ⊥.

∨1

i=1
Fi = F1.

∨n+1

i=1
Fi =

∨n

i=1
Fi ∨ Fn+1.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable ¬P .

A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction
of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of
literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of
complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions
contains a pair of complementary literals P and ¬P .

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF
formulas is known to be coNP-complete.
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Conversion to CNF/DNF

Proposition 2.9 For every formula there is an equivalent formula in CNF (and also an
equivalent formula in DNF).

Proof. We describe a (naive) algorithm to convert a formula to CNF.

Apply the following rules as long as possible (modulo associativity and commutativity
of ∧ and ∨):

Step 1: Eliminate equivalences:

H [F ↔ G]p ⇒CNF H [(F → G) ∧ (G → F )]p

Step 2: Eliminate implications:

H [F → G]p ⇒CNF H [¬F ∨ G]p

Step 3: Push negations downward:

H [¬(F ∨ G)]p ⇒CNF H [¬F ∧ ¬G]p

H [¬(F ∧ G)]p ⇒CNF H [¬F ∨ ¬G]p

Step 4: Eliminate multiple negations:

H [¬¬F ]p ⇒CNF H [F ]p

Step 5: Push disjunctions downward:

H [(F ∧ F ′) ∨ G]p ⇒CNF H [(F ∨ G) ∧ (F ′ ∨ G)]p

Step 6: Eliminate ⊤ and ⊥:

H [F ∧ ⊤]p ⇒CNF H [F ]p

H [F ∧ ⊥]p ⇒CNF H [⊥]p

H [F ∨ ⊤]p ⇒CNF H [⊤]p

H [F ∨ ⊥]p ⇒CNF H [F ]p

H [¬⊥]p ⇒CNF H [⊤]p

H [¬⊤]p ⇒CNF H [⊥]p
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Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and 5 are a bit more
complicated.

For step 1, we can prove termination in the following way: We define a function µ1 from
formulas to positive integers such that µ1(⊥) = µ1(⊤) = µ1(P ) = 1, µ1(¬F ) = µ1(F ),
µ1(F ∧ G) = µ1(F ∨ G) = µ1(F → G) = µ1(F ) + µ1(G), and µ1(F ↔ G) = 2µ1(F ) +
2µ1(G) + 1. Observe that µ1 is constructed in such a way that µ1(F ) > µ1(G) implies
µ1(H [F ]) > µ1(H [G]) for all formulas F , G, and H . Using this property, we can show
that whenever a formula H ′ is the result of applying the rule of step 1 to a formula
H , then µ1(H) > µ1(H

′). Since µ1 takes only positive integer values, step 1 must
terminate.

Termination of steps 3 and 5 is proved similarly. For step 3, we use function µ2 from
formulas to positive integers such that µ2(⊥) = µ2(⊤) = µ2(P ) = 1, µ2(¬F ) = 2µ2(F ),
µ2(F ∧G) = µ2(F ∨G) = µ2(F → G) = µ2(F ↔ G) = µ2(F ) + µ2(G) + 1. Whenever a
formula H ′ is the result of applying a rule of step 3 to a formula H , then µ2(H) > µ2(H

′).
Since µ2 takes only positive integer values, step 3 must terminate.

For step 5, we use a function µ3 from formulas to positive integers such that µ3(⊥) =
µ3(⊤) = µ3(P ) = 1, µ3(¬F ) = µ3(F ) + 1, µ3(F ∧ G) = µ3(F → G) = µ3(F ↔ G) =
µ3(F ) + µ3(G) + 1, and µ3(F ∨ G) = 2µ3(F )µ3(G). Again, if a formula H ′ is the result
of applying a rule of step 5 to a formula H , then µ3(H) > µ3(H

′). Since µ3 takes only
positive integer values, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions
have to be pushed downward in step 5. 2

Negation Normal Form (NNF)

The formula after application of Step 4 is said to be in Negation Normal Form, i.e., it
contains neither → nor ↔ and negation symbols only occur in front of propositional
variables (atoms).

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the
size of the original one.
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Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that F |=| G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ ⇔ G |= ⊥”

we can get an efficient transformation.

Idea: A formula H [F ]p is satisfiable if and only if H [P ] ∧ (P ↔ F ) is satisfiable (where
P is a new propositional variable that works as an abbreviation for F ).

We can use this rule recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional
factor (each formula P ↔ F gives rise to at most one application of the distributivity
law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into
account.

Let P be a propositional variable not occurring in H [F ]p.

Define the formula def(H, p, P, F ) by

• (P → F ), if pol(H, p) = 1,

• (F → P ), if pol(H, p) = −1,

• (P ↔ F ), if pol(H, p) = 0.

Proposition 2.10 Let P be a propositional variable not occurring in H [F ]p. Then
H [F ]p is satisfiable if and only if H [P ]p ∧ def(H, p, P, F ) is satisfiable.

Proof. Exercise. 2
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The number of eventually generated clauses is a good indicator for useful CNF trans-
formations.

The functions ν and ν̄ give us an overapproximation for the number of clauses generated
by a formula that occurs positively/negatively.

G ν(G) ν̄(G)

F1 ∧ F2 ν(F1) + ν(F2) ν̄(F1)ν̄(F2)
F1 ∨ F2 ν(F1)ν(F2) ν̄(F1) + ν̄(F2)
F1 → F2 ν̄(F1)ν(F2) ν(F1) + ν̄(F2)
F1 ↔ F2 ν(F1)ν̄(F2) + ν̄(F1)ν(F2) ν(F1)ν(F2) + ν̄(F1)ν̄(F2)
¬F1 ν̄(F1) ν(F1)

P,⊤,⊥ 1 1

Optimized CNF

A better CNF transformation:

Step 1: Exhaustively apply modulo commutativity of ↔ and associativity/commutativity
of ∧, ∨:

H [(F ∧ ⊤)]p ⇒OCNF H [F ]p

H [(F ∨ ⊥)]p ⇒OCNF H [F ]p

H [(F ↔ ⊥)]p ⇒OCNF H [¬F ]p

H [(F ↔ ⊤)]p ⇒OCNF H [F ]p

H [(F ∨ ⊤)]p ⇒OCNF H [⊤]p

H [(F ∧ ⊥)]p ⇒OCNF H [⊥]p

H [(F ∧ F )]p ⇒OCNF H [F ]p

H [(F ∨ F )]p ⇒OCNF H [F ]p

H [(F ∧ (F ∨ G))]p ⇒OCNF H [F ]p

H [(F ∨ (F ∧ G))]p ⇒OCNF H [F ]p

H [(F ∧ ¬F )]p ⇒OCNF H [⊥]p

H [(F ∨ ¬F )]p ⇒OCNF H [⊤]p

H [¬⊤]p ⇒OCNF H [⊥]p

H [¬⊥]p ⇒OCNF H [⊤]p

H [(F → ⊥)]p ⇒OCNF H [¬F ]p

H [(F → ⊤)]p ⇒OCNF H [⊤]p

H [(⊥ → F )]p ⇒OCNF H [⊤]p

H [(⊤ → F )]p ⇒OCNF H [F ]p
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Step 2: Introduce top-down fresh variables for beneficial subformulas:

H [F ]p ⇒OCNF H [P ]p ∧ def(H, p, P, F )

where P is new to H [F ]p and ν(H [F ]p) > ν(H [P ]p ∧ def(H, p, P, F )).

Remark: Although computing ν is not practical in general, the test ν(H [F ]p) > ν(H [P ]p ∧
def(H, p, P, F )) can be computed in constant time.

Step 3: Eliminate equivalences dependent on their polarity:

H [F ↔ G]p ⇒OCNF H [(F → G) ∧ (G → F )]p

if pol(F, p) = 1 or pol(F, p) = 0.

H [F ↔ G]p ⇒OCNF H [(F ∧ G) ∨ (¬F ∧ ¬G)]p

if pol(F, p) = −1.

Step 4: Apply steps 2, 3, 4, 5 of ⇒CNF

Remark: The ⇒OCNF algorithm is already close to a state of the art algorithm, but some
additional redundancy tests and simplification mechanisms are missing.
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