
Superposition: Extensions

Extensions and improvements:

simplification techniques,

selection functions (when, what),

redundancy for inferences,

constraint reasoning,

decidable first-order fragments.
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Theory Reasoning

Superposition vs. resolution + equality axioms:

specialized inference rules,

thus no inferences with theory axioms,

computation modulo symmetry,

stronger ordering restrictions,

no variable overlaps,

stronger redundancy criterion.
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Theory Reasoning

Similar techniques can be used for other theories:

transitive relations,

dense total orderings without endpoints,

commutativity,

associativity and commutativity,

abelian monoids,

abelian groups,

divisible torsion-free abelian groups.
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Part 7: Outlook

Further topics in automated reasoning.
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7.1 Satisfiability Modulo Theories (SMT)

CDCL checks satisfiability of propositional formulas.

CDCL can also be used for ground first-order formulas without

equality:

Ground first-order atoms are treated like propositional

variables.

Truth values of P(a),Q(a),Q(f (a)) are independent.
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Satisfiability Modulo Theories (SMT)

For ground formulas with equality, independence is lost:

If b ≈ c is true, then f (b) ≈ f (c) must also be true.

Similarly for other theories, e. g. linear arithmetic: b > 5

implies b > 3.

We can still use CDCL, but we must combine it with a decision

procedure for the theory part T :

M |=T C : M and the theory axioms T entail C .
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Satisfiability Modulo Theories (SMT)

New CDCL rules:

T -Propagate:

M ‖ N ⇒CDCL(T) M L ‖ N

if M |=T L where L is undefined in M and L or L occurs in N.

T -Learn:

M ‖ N ⇒CDCL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .
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Satisfiability Modulo Theories (SMT)

T -Backjump:

M Ld M ′ ‖ N ∪ {C} ⇒CDCL(T) M L′ ‖ N ∪ {C}

if M Ld M ′ |= ¬C

and there is some “backjump clause” C ′ ∨ L′ such that

N ∪ {C} |=T C ′ ∨ L′ and M |= ¬C ′,

L′ is undefined under M , and

L′ or L′ occurs in N or in M Ld M ′.
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7.2 Sorted Logics

So far, we have considered only unsorted first-order logic.

In practice, one often considers many-sorted logics:

read/2 becomes read : array × nat → data.

write/3 becomes write : array × nat × data→ array .

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.
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Sorted Logics

Algebras:

Instead of universe UA, one set per sort: arrayA, natA.

Interpretations of function and predicate symbols correspond

to their declarations:

readA : arrayA × natA → dataA
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Sorted Logics

Proof theory, calculi, etc.:

Essentially as in the unsorted case.

More difficult:

Subsorts

Overloading

Better treated via relativization:

∀xS φ⇒ ∀y S(y)→ φ{xS 7→ y}
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7.3 Splitting

Tableau-like rule within resolution to eliminate variable-disjoint

(positive) disjunctions:

N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

if var(C1) ∩ var(C2) = ∅.

Split clauses are smaller and more likely to be usable for

simplification.

Splitting tree is explored using intelligent backtracking.
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7.4 Integrating Theories into Superposition

Certain kinds of theories/axioms are

important in practice,

but difficult for theorem provers.

So far important case: equality

but also: transitivity, arithmetic. . .
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Integrating Theories into Superposition

Idea: Combine Superposition and Constraint Reasoning.

Superposition Left Modulo Theories:

Λ1 ‖ C1 ∨ t ≈ t′ Λ2 ‖ C2 ∨ s[u] 6≈ s′

(Λ1, Λ2 ‖ C1 ∨ C2 ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u),

. . .
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