
6.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K -minimal infinite rewrite

sequences

t1 →
∗
R u1 →K t2 →

∗
R u2 →K . . .

using well-founded orderings.

We observe that the requirements for the orderings used here

are less restrictive than for reduction orderings:

K -rules are only used at the top, so we need stability under

substitutions, but compatibility with contexts is unnecessary.

While →K -steps should be decreasing, for →R -steps it would

be sufficient to show that they are not increasing.

491



Reduction Pairs and Argument Filterings

This motivates the following definitions:

Rewrite quasi-ordering %:

reflexive and transitive binary relation, stable under substitu-

tions, compatible with contexts.

Reduction pair (%,≻):

% is a rewrite quasi-ordering.

≻ is a well-founded ordering that is stable under substitutions.

% and ≻ are compatible: % ◦ ≻ ⊆ ≻ or ≻ ◦% ⊆ ≻.

(In practice, ≻ is almost always the strict part of the quasi-

ordering %.)

492



Reduction Pairs and Argument Filterings

Clearly, for any reduction ordering ≻, (�,≻) is a reduction pair.

More general reduction pairs can be obtained using argument

filterings:

Argument filtering π:

π : Ω ∪ Ω♯ → N ∪ list of N

π(f ) =





i ∈ {1, . . . , arity(f )}, or

[i1, . . . , ik ], where 1 ≤ i1 < · · · < ik ≤ arity(f ),

0 ≤ k ≤ arity(f )

493



Reduction Pairs and Argument Filterings

Extension to terms:

π(x) = x

π(f (t1, . . . , tn)) = π(ti ), if π(f ) = i

π(f (t1, . . . , tn)) = f ′(π(ti1), . . . ,π(tik )), if π(f ) = [i1, . . . , ik ],

where f ′/k is a new function symbol.

494



Reduction Pairs and Argument Filterings

Let ≻ be a reduction ordering, let π be an argument filtering.

Define s ≻π t iff π(s) ≻ π(t) and s %π t iff π(s) � π(t).

Lemma 6.2:

(%π,≻π) is a reduction pair.

Proof:

Follows from the following two properties:

π(sσ) = π(s)σπ, where σπ(x) := π(σ(x)).

π(s[u]p) =




π(s), if p does not correspond to any position in π(s)

π(s)[π(u)]q, if p corresponds to q in π(s)
2

495



Reduction Pairs and Argument Filterings

For interpretation-based orderings (such as polynomial orderings)

the idea of “cutting out” certain subterms can be included

directly in the definition of the ordering:

496



Reduction Pairs and Argument Filterings

Reduction pairs by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial

ordering on its universe.

Assume that all interpretations fA of function symbols are

weakly monotone, i. e., ai � bi implies f (a1, . . . , , an) �

f (b1, . . . , bn) for all ai , bi ∈ UA.

Define s %A t iff A(β)(s) � A(β)(t) for all assignments

β : X → UA; define s ≻A t iff A(β)(s) ≻ A(β)(t) for all

assignments β : X → UA.

Then (%A,≻A) is a reduction pair.

497



Reduction Pairs and Argument Filterings

For polynomial orderings, this definition permits interpretations

of function symbols where some variable does not occur at all

(e. g., Pf (X ,Y ) = 2X + 1 for a binary function symbol). It is

no longer required that every variable must occur with some

positive coefficient.

498



Reduction Pairs and Argument Filterings

Theorem 6.3 (Arts and Giesl):

Let K be a cycle in the dependency graph of the TRS R. If

there is a reduction pair (%,≻) such that

• l % r for all l → r ∈ R,

• l % r or l ≻ r for all l → r ∈ K ,

• l ≻ r for at least one l → r ∈ K ,

then there is no K -minimal infinite sequence.

499



Reduction Pairs and Argument Filterings

Proof:

Assume that t1 →∗

R u1 →K t2 →∗

R u2 →K . . . is a K -minimal infinite

rewrite sequence.

As l % r for all l → r ∈ R, we obtain ti % ui by stability under

substitutions, compatibility with contexts, reflexivity and transitivity.

As l % r or l ≻ r for all l → r ∈ K , we obtain ui (% ∪ ≻) ti+1 by

stability under substitutions.

So we get an infinite (% ∪ ≻)-sequence containing infinitely many

≻-steps (since every DP in K , in particular the one for which l ≻ r

holds, is used infinitely often).

By compatibility of % and ≻, we can transform this into an infinite

≻-sequence, contradicting well-foundedness. 2

500



Reduction Pairs and Argument Filterings

The idea can be extended to SCCs in the same way as for the

subterm criterion:

Search for a reduction pair (%,≻) such that l % r for all

l → r ∈ R and l % r or l ≻ r for all DPs l → r in the SCC.

Delete all DPs in the SCC for which l ≻ r . Then re-compute

SCCs for the remaining graph and re-start.

501



Reduction Pairs and Argument Filterings

Example: Consider the following TRS R from [Arts and Giesl]:

minus(x , 0)→ x (1)

minus(s(x), s(y))→ minus(x , y) (2)

quot(0, s(y))→ 0 (3)

quot(s(x), s(y))→ s(quot(minus(x , y), s(y))) (4)

(R is not contained in any simplification ordering, since the

left-hand side of rule (4) is embedded in the right-hand side

after instantiating y by s(x).)

502



Reduction Pairs and Argument Filterings

R has three dependency pairs:

minus♯(s(x), s(y))→ minus♯(x , y) (5)

quot♯(s(x), s(y))→ quot♯(minus(x , y), s(y)) (6)

quot♯(s(x), s(y))→ minus♯(x , y) (7)

The dependency graph of R is

(5) (7) (6)

503



Reduction Pairs and Argument Filterings

There are exactly two SCCs (and also two cycles). The

cycle at (5) can be handled using the subterm criterion with

π(minus♯) = 1. For the cycle at (6) we can use an argument

filtering π that maps minus to 1 and leaves all other function

symbols unchanged (that is, π(g) = [1, . . . , arity(g)] for every g

different from minus.) After applying the argument filtering, we

compare left and right-hand sides using an LPO with precedence

quot > s (the precedence of other symbols is irrelevant). We

obtain l ≻ r for (6) and l % r for (1), (2), (3), (4), so the

previous theorem can be applied.

504



DP Processors

The methods described so far are particular cases of DP

processors:

A DP processor

(G ,R)

(G1,R1), . . . , (Gn,Rn)

takes a graph G and a TRS R as input and produces a set of

pairs consisting of a graph and a TRS.

It is sound and complete if there are K -minimal infinite sequences

for G and R if and only if there are K -minimal infinite sequences

for at least one of the pairs (Gi ,Ri ).

505



DP Processors

Examples:

(G ,R)

(SCC1,R), . . . , (SCCn,R)

where SCC1, . . . ,SCCn are the strongly conn. components of G .

(G ,R)

(G \ N,R)

if there is an SCC of G and a simple projection π such that

π(l) D π(r) for all DPs l → r in the SCC, and N is the set of

DPs of the SCC for which π(l) ⊲ π(r).

(and analogously for reduction pairs)

506



Innermost Termination

The dependency method can also be used for proving termination

of innermost rewriting: s
i
−→R t if s →R t at position p and

no rule of R can be applied at a position strictly below p. (DP

processors for innermost termination are more powerful than

for ordinary termination, and for program analysis, innermost

termination is usually sufficient.)

507



6.4 Superposition

Goal:

Combine the ideas of superposition for first-order logic without

equality (overlap maximal literals in a clause) and Knuth-Bendix

completion (overlap maximal sides of equations) to get a

calculus for equational clauses.

508



Observation

It is possible to encode an arbitrary predicate p using a function

fp and a new constant tt:

P(t1, . . . , tn) ; fP(t1, . . . , tn) ≈ tt

¬ P(t1, . . . , tn) ; ¬ fP(t1, . . . , tn) ≈ tt

In equational logic it is therefore sufficient to consider the case

that Π = ∅, i. e., equality is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.

509



The Superposition Calculus – Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality

symbol.

We will first explain the ideas and motivations behind the

superposition calculus and its completeness proof. Precise

definitions will be given later.

510



The Superposition Calculus – Informally

Ground inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)

511



The Superposition Calculus – Informally

Ordering restrictions:

Some considerations:

The literal ordering must depend primarily on the larger term

of an equation.

As in the resolution case, negative literals must be a bit larger

than the corresponding positive literals.

Additionally, we need the following property:

If s ≻ t ≻ u, then s 6≈ u must be larger than s ≈ t.

In other words, we must compare first the larger term, then

the polarity, and finally the smaller term.

512



The Superposition Calculus – Informally

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t},

to a negative literal s 6≈ t the multiset {s, s, t, t}.

The literal ordering ≻L compares these multisets using the

multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their

multisets of literals using the multiset extension of ≻L.

513



The Superposition Calculus – Informally

Ordering restrictions:

Ground inferences are necessary only if the following conditions

are satisfied:

– In superposition inferences, the left premise is smaller than

the right premise.

– The literals that are involved in the inferences are maximal

in the respective clauses

(strictly maximal for positive literals in superposition

inferences).

– In these literals, the lhs is greater than or equal to the rhs

(in superposition inferences: greater than the rhs).

514



The Superposition Calculus – Informally

Model construction:

We want to use roughly the same ideas as in the completenes

proof for superposition on first-order without equality.

But: a Herbrand interpretation does not work for equality:

The equality symbol ≈ must be interpreted by equality in the

interpretation.

515



The Superposition Calculus – Informally

Solution: Define a set E of ground equations and take

TΣ(∅)/E = TΣ(∅)/≈E as the universe.

Then two ground terms s and t are equal in the interpretation,

if and only if s ≈E t.

If E is a terminating and confluent rewrite system R, then two

ground terms s and t are equal in the interpretation, if and only

if s ↓R t.

516



The Superposition Calculus – Informally

One problem:

In the completeness proof for the resolution calculus, the

following property holds:

If C = C ′ ∨ A with a strictly maximal and positive literal A

is false in the current interpretation, then adding A to the

current interpretation cannot make any literal of C ′ true.

This does not hold for superposition:

Let b ≻ c ≻ d .

Assume that the current rewrite system (representing the

current interpretation) contains the rule c → d .

Now consider the clause b ≈ c ∨ b ≈ d .
517



The Superposition Calculus – Informally

We need a further inference rule to deal with clauses of this

kind, either the “Merging Paramodulation” rule of Bachmair

and Ganzinger or the following “Equality Factoring” rule due to

Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.

518



The Superposition Calculus – Informally

How do the non-ground versions of the inference rules for

superposition look like?

Main idea as in non-equational first-order case:

Replace identity by unifiability.

Apply the mgu to the resulting clause.

In the ordering restrictions, replace ≻ by 6�.

519



The Superposition Calculus – Informally

However:

As in Knuth-Bendix completion, we do not want to consider

overlaps at or below a variable position.

Consequence: there are inferences between ground instances

Dθ and Cθ of clauses D and C which are not ground instances

of inferences between D and C .

Such inferences have to be treated in a special way in the

completeness proof.

520



The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the

superposition calculus and its completeness proof.

We will now start again from the beginning giving precise

definitions and proofs.

Inference rules are applied with respect to the commutativity of

equality ≈.

521



The Superposition Calculus – Formally

Inference rules (part 1):

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and

u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and

u is not a variable.

522



The Superposition Calculus – Formally

Inference rules (part 2):

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

523



The Superposition Calculus – Formally

Theorem 6.4:

All inference rules of the superposition calculus are correct, i. e.,

for every rule

Cn, . . . ,C1

C0

we have {C1, . . . ,Cn} |= C0.

Proof:

Exercise. 2

524



The Superposition Calculus – Formally

Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t},

to a negative literal s 6≈ t the multiset {s, s, t, t}.

The literal ordering ≻L compares these multisets using the

multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their

multisets of literals using the multiset extension of ≻L.

525



The Superposition Calculus – Formally

Inferences have to be computed only if the following ordering

restrictions are satisfied:

– In superposition inferences, after applying the unifier to

both premises, the left premise is not greater than or equal

to the right one.

– The last literal in each premise is maximal in the respective

premise, i. e., there exists no greater literal

(strictly maximal for positive literals in superposition

inferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is not smaller than the rhs

(in superposition inferences: neither smaller nor equal).

526



The Superposition Calculus – Formally

A ground clause C is called redundant w. r. t. a set of ground

clauses N, if it follows from clauses in N that are smaller than C .

A clause is redundant w. r. t. a set of clauses N, if all its ground

instances are redundant w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by

Red(N).

N is called saturated up to redundancy, if the conclusion of

every inference from clauses in N \ Red(N) is contained in

N ∪ Red(N).

527


