
4.6 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent

convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use orientable

instances for rewriting.

Note: If ≻ is total on ground terms, then every ground

instance of an equation is trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

425



Unfailing Completion

Let E be a set of equations, let ≻ be a reduction ordering.

We define the relation →E≻ by

s →E≻ t iff there exist (u ≈ v) ∈ E or (v ≈ u) ∈ E ,

p ∈ pos(s), and σ : X → TΣ(X ),

such that s|p = uσ and t = s[vσ]p

and uσ ≻ vσ.

Note: →E≻ is terminating by construction.

426



Unfailing Completion

From now on let ≻ be a reduction ordering that is total on

ground terms.

E is called ground convergent w. r. t. ≻, if for all ground terms

s and t with s ↔∗
E t there exists a ground term v such that

s →∗
E≻ v ∗

E≻← t.

(Analogously for E ∪ R.)

427



Unfailing Completion

As for standard completion, we establish ground convergence by

computing critical pairs.

However, the ordering ≻ is not total on non-ground terms.

Since sθ ≻ tθ implies s 6� t, we approximate ≻ on ground terms

by 6� on arbitrary terms.

428



Unfailing Completion

Let ui
.
≈ vi (i = 1, 2) be equations in E whose variables have

been renamed such that vars(u1
.
≈ v1) ∩ vars(u2

.
≈ v2) = ∅.

Let p ∈ pos(u1) be a position such that u1|p is not a variable,

σ is an mgu of u1|p and u2, and uiσ 6� viσ (i = 1, 2). Then

〈v1σ, (u1σ)[v2σ]p〉 is called a semi-critical pair of E with respect

to ≻.

The set of all semi-critical pairs of E is denoted by SP≻(E ).

Semi-critical pairs of E ∪ R are defined analogously. If →R ⊆ ≻,

then CP(R) and SP≻(R) agree.

429



Unfailing Completion

Note: In contrast to critical pairs, it may be necessary to

consider overlaps of a rule with itself at the top.

For instance, if E = {f (x) ≈ g(y)}, then 〈g(y), g(y ′)〉 is a

non-trivial semi-critical pair.

430



Unfailing Completion

The Deduce rule takes now the following form:

Deduce

(E ;R) ⇒UKBC (E ∪ {s ≈ t};R)

if 〈s, t〉 ∈ SP≻(E ∪ R)

The other rules are inherited from ⇒KBC . The fairness criterion

for runs is replaced by

SP≻(E∗ ∪ R∗) ⊆ E∞

(i. e., if every semi-critical pair between persisting rules or

equations is computed at some step of the derivation).

431



Unfailing Completion

Analogously to Thm. 4.32 we obtain now the following theorem:

Theorem 4.33:

Let (E0;R0) ⇒UKBC (E1;R1) ⇒UKBC (E2;R2) ⇒UKBC . . . be a

fair run; let R0 = ∅. Then

(1) E∗ ∪ R∗ is equivalent to E0, and

(2) E∗ ∪ R∗ is ground convergent.

432



Unfailing Completion

Moreover one can show that, whenever there exists a reduced

convergent R such that ≈E0
= ↓R and →R ∈ ≻, then for every

fair and simplifying run E∗ = ∅ and R∗ = R up to variable

renaming.

Here R is called reduced, if for every l → r ∈ R, both l and r

are irreducible w. r. t. R \ {l → r}. A run is called simplifying,

if R∗ is reduced, and for all equations u ≈ v ∈ E∗, u and v are

incomparable w. r. t. ≻ and irreducible w. r. t. R∗.

433



Unfailing Completion

Unfailing completion is refutationally complete for equational

theories:

Theorem 4.34:

Let E be a set of equations, let ≻ be a reduction ordering that

is total on ground terms. For any two terms s and t, let ŝ and

t̂ be the terms obtained from s and t by replacing all variables

by Skolem constants. Let eq/2, true/0 and false/0 be new

operator symbols, such that true and false are smaller than all

other terms. Let E0 = E ∪ {eq(ŝ, t̂) ≈ true, eq(x , x) ≈ false}.

If (E0; ∅) ⇒UKBC (E1;R1) ⇒UKBC (E2;R2) ⇒UKBC . . . be a

fair run of unfailing completion, then s ≈E t iff some Ei ∪ Ri

contains true ≈ false.

434



Unfailing Completion

Outlook:

Combine ordered resolution and unfailing completion to get a

calculus for equational clauses:

compute inferences between (strictly) maximal literals as in

ordered resolution,

compute overlaps between maximal sides of equations as in

unfailing completion

⇒ Superposition calculus.

435



Part 5: Implementing Saturation Procedures

Problem:

Refutational completeness is nice in theory, but . . .

. . . it guarantees only that proofs will be found eventually, not

that they will be found quickly.

Even though orderings and selection functions reduce the

number of possible inferences, the search space problem is

enormous.

First-order provers “look for a needle in a haystack”: It may

be necessary to make some millions of inferences to find a

proof that is only a few dozens of steps long.

436



Coping with Large Sets of Formulas

Consequently:

• We must deal with large sets of formulas.

• We must use efficient techniques to find formulas that can

be used as partners in an inference.

• We must simplify/eliminate as many formulas as possible.

• We must use efficient techniques to check whether a formula

can be simplified/eliminated.

437



Coping with Large Sets of Formulas

Note:

Often there are several competing implementation techniques.

Design decisions are not independent of each other.

Design decisions are not independent of the particular class of

problems we want to solve. (FOL without equality/FOL with

equality/unit equations, size of the signature, special algebraic

properties like AC, etc.)

438



5.1 The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences

together with the “given clause” using an appropriate index

data structure.

Compute the conclusions of these inferences; add them to the

set of clauses.

439



The Main Loop

Consequently: split the set of clauses into two subsets.

• Wo = “Worked-off” (or “active”) clauses: Have already

been selected as “given clause”. (So all inferences between

these clauses have already been computed.)

• Us = “Usable” (or “passive”) clauses: Have not yet been

selected as “given clause”.

440



The Main Loop

During each iteration of the main loop:

Select a new given clause C from Us; Us := Us \ {C}.

Find partner clauses Di from Wo; New = Infer({Di | i ∈

I },C ); Us = Us ∪ New ; Wo = Wo ∪ {C}

441



The Main Loop

Additionally:

Try to simplify C using Wo. (Skip the remainder of the

iteration, if C can be eliminated.)

Try to simplify (or even eliminate) clauses from Wo using C .

442



The Main Loop

Design decision: should one also simplify Us using Wo ?

yes ; “Full Reduction”:

Advantage: simplifications of Us may be useful to derive the

empty clause.

no ; “Lazy Reduction”:

Advantage: clauses in Us are really passive; only clauses in

Wo have to be kept in index data structure. (Hence: can

use index data structure for which retrieval is faster, even if

update is slower and space consumption is higher.)

443



Main Loop Full Reduction

Us = N;

Wo = ∅;

while (Us 6= ∅ && ⊥ 6∈ Us) {

Given = select clause from Us and move it from Us to Wo;

New = all inferences between Given and Wo;

Reduce New together with Wo and Us;

Us = Us ∪ New ;}

if (⊥ ∈ Us)

return “unsatisfiable”;

else

return “satisfiable”;

444



445



5.2 Term Representations

The obvious data structure for terms: Trees

f (g(x1), f (g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

446



Term Representations

An alternative: Flatterms

f (g(x1), f (g(x1), x2))

f g x1 f g x1 x2

need more memory;

but: better suited for preorder term traversal

and easier memory management.

447



5.3 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i. e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .

448



Index Data Structures

Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the

requirements are different (insertion and deletion are much less

important).

449



Index Data Structures

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

450



Index Data Structures

Perfect filtering:

The indexing technique returns exactly those terms satisfying

the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all

terms satisfying the query.

Retrieval operations must be followed by an additional check,

but the index can often be implemented more efficiently.

Frequently: All occurrences of variables are treated as different

variables.

451



Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f (g(∗, b), ∗): f .1.g .1.∗

f .1.g .2.b

f .2.∗

Each leaf of the trie contains the set of (pointers to) all terms

that contain the respective path.

452



Path Indexing

Example: Path index for {f (g(d , ∗), c)}

{1}

{1} {1}

f
1 2

g
c

1 2

d ∗

453



Path Indexing

Example: Path index for {f (g(d , ∗), c), f (g(∗, b), ∗)}

{1}
{2}

{2} {1} {2} {1}

f
1 2

g
c

∗

1 2

∗ d b ∗

454



Path Indexing

Example: Path index for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c)}

{1, 3}
{2}

{2} {1, 3} {2, 3} {1}

f
1 2

g
c

∗

1 2

∗ d b ∗

455



Path Indexing

Example: Path index for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c), f (g(∗, c), b)}

{4}
{1, 3}

{2}

{2, 4} {1, 3} {2, 3} {4} {1}

f
1 2

g b
c

∗

1 2

∗ d b
c

∗

456



Path Indexing

Example: Path index for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c), f (g(∗, c), b), f (∗, ∗)}

{5} {4}
{1, 3}

{2, 5}

{2, 4} {1, 3} {2, 3} {4} {1}

f
1 2

∗ g b
c

∗

1 2

∗ d b
c

∗

457



Path Indexing

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances.

Disadvantages:

Retrieval requires combining intermediate results for subterms.

458



Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f (g(∗, b), ∗): f .g .∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is

represented by the path.

459



Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c)}

{1}

f
g

d

∗

c

460



Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), f (g(∗, b), ∗)}

{1} {2}

f
g

d ∗

∗ b

c ∗

461



Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c)}

{3} {1} {2}

f
g

d ∗

b ∗ b

c c ∗

462



Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c), f (g(∗, c), b)}

{3} {1} {2} {4}

f
g

d ∗

b ∗ b c

c c ∗ b

463



Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c), f (g(∗, c), b), f (∗, ∗)}

{5}

{3} {1} {2} {4}

f
g ∗

d ∗
∗

b ∗ b c

c c ∗ b

464



Discrimination Trees

Advantages:

Each leaf yields one term, hence retrieval does not require

intersections of intermediate results for subterms.

Good for finding generalizations.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed

up the search for instances or unifiable terms.

Backtracking required for retrieval.

465



Feature Vector Indexing

Goal:

C ′ is subsumed by C if C ′ = Cσ ∨ D.

Find all clauses C ′ for a given C or vice versa.

466



Feature Vector Indexing

If C ′ is subsumed by C , then

• C ′ contains at least as many literals as C .

• C ′ contains at least as many positive literals as C .

• C ′ contains at least as many negative literals as C .

• C ′ contains at least as many function symbols as C .

• C ′ contains at least as many occurrences of f as C .

• C ′ contains at least as many occurrences of f in negative

literals as C .

• the deepest occurrence of f in C ′ is at least as deep as in C .

• . . .
467



Feature Vector Indexing

Idea:

Select a list of these “features”.

Compute the “feature vector” (a list of natural numbers) for

each clause and store it in a trie.

When searching for a subsuming clause: Traverse the trie,

check all clauses for which all features are smaller or equal.

(Stop if a subsuming clause is found.)

When searching for subsumed clauses: Traverse the trie,

check all clauses for which all features are larger or equal.

468



Feature Vector Indexing

Advantages:

Works on the clause level, rather than on the term level.

Specialized for subsumption testing.

Disadvantages:

Needs to be complemented by other index structure for other

operations.

469



Literature

Literature:

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov: Term

Indexing, Ch. 26 in Robinson and Voronkov (eds.), Handbook of

Automated Reasoning, Vol. II, Elsevier, 2001.

Christoph Weidenbach: Combining Superposition, Sorts and

Splitting, Ch. 27 in Robinson and Voronkov (eds.), Handbook of

Automated Reasoning, Vol. II, Elsevier, 2001.

470


