
Saturation of General Clause Sets

Corollary 3.36:

Let N be a set of general clauses saturated under Sup≻sel, i. e.,

Sup≻sel(N) ⊆ N. Then there exists a selection function sel′ such

that sel |N = sel′ |N and GΣ(N) is also saturated, i. e.,

Sup≻sel′(GΣ(N)) ⊆ GΣ(N).

Proof:

We first define the selection function sel′ such that sel′(C) =

sel(C) for all clauses C ∈ GΣ(N) ∩ N. For C ∈ GΣ(N) \ N we

choose a fixed but arbitrary clause D ∈ N with C ∈ GΣ(D) and

define sel′(C) to be those occurrences of literals that are ground

instances of the occurrences selected by sel in D. Then proceed

as in the proof of Cor. 3.27 using the above lifting lemma. 2

315

Soundness and Refutational Completeness

Theorem 3.37:

Let ≻ be an atom ordering and sel a selection function such that

Sup≻sel(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof:

The “⇐” part is trivial. For the “⇒” part consider the

propositional level: Construct a candidate interpretation NI as

for superposition without selection, except that clauses C in N

that have selected literals are not productive, even when they

are false in NC and when their maximal atom occurs only once

and positively. The result then follows by Corollary 3.36. 2

316

Craig-Interpolation

A theoretical application of superposition is Craig-Interpolation:

Theorem 3.38 (Craig 1957):

Let φ and ψ be two propositional formulas such that φ |= ψ.

Then there exists a formula χ (called the interpolant for φ |= ψ),

such that χ contains only prop. variables occurring both in φ

and in ψ, and such that φ |= χ and χ |= ψ.

317

Craig-Interpolation

Proof:

Translate φ and ¬ψ into CNF. let N and M, resp., denote the

resulting clause set. Choose an atom ordering ≻ for which the prop.

variables that occur in φ but not in ψ are maximal. Saturate N into

N∗ w. r. t. Sup≻

sel with an empty selection function sel . Then saturate

N∗ ∪M w. r. t. Sup≻

sel to derive ⊥. As N∗ is already saturated, due to

the ordering restrictions only inferences need to be considered where

premises, if they are from N∗, only contain symbols that also occur

in ψ. The conjunction of these premises is an interpolant χ. The

theorem also holds for first-order formulas. For universal formulas

the above proof can be easily extended. In the general case, a proof

based on superposition technology is more complicated because of

Skolemization. 2

318

Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether? Under which

circumstances are clauses unnecessary? (Conjecture: e. g., if

they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.

319

A Formal Notion of Redundancy

Recall: Let N be a set of ground clauses and C a ground

clause (not necessarily in N). C is called redundant w. r. t. N,

if there exist C1, . . . ,Cn ∈ N, n ≥ 0, such that Ci ≺ C and

C1, . . . ,Cn |= C .

Redundancy for general clauses: C is called redundant w. r. t. N,

if all ground instances Cσ of C are redundant w. r. t. GΣ(N).

Note: The same ordering ≺ is used for ordering restrictions and

for redundancy (and for the completeness proof).

320

Examples of Redundancy

Proposition 3.39:

Recall the redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N.

Tautology Deletion

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.

Subsumption

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}.

Subsumption Resolution

321

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Sup≻sel)

:⇔ Sup≻sel(N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 3.40:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

322

Saturation up to Redundancy

Proof (Sketch):

(i) Ground case:

• consider the construction of the candidate interpretation

N≻
I for Sup≻sel

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples

for N≻
I

The premises of “essential” inferences are either minimal

counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theo-

rem 3.37. 2

323

Monotonicity Properties of Redundancy

Theorem 3.41:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N)⇒ Red(N) ⊆ Red(N \M)

We conclude that redundancy is preserved when, during a

theorem proving process, one adds (derives) new clauses or

deletes redundant clauses. Recall that Red(N) may include

clauses that are not in N.

324

A First-Order Superposition Theorem Prover

Straightfotward extension of the propositional STP prover.

3 clause sets:

N(ew) containing new inferred clauses

U(sable) containing reduced new inferred clauses

clauses get into W(orked) O(ff) once their inferences have

been computed

Strategy:

Inferences will only be computed when there are no

possibilities for simplification

325

Rewrite Rules for STP

Tautology Deletion

(N ⊎ {C};U;WO) ⇒STP (N;U;WO)

if C is a tautology

Forward Subsumption

(N ⊎ {C};U;WO) ⇒STP (N;U;WO)

if some D ∈ (U ∪WO) subsumes C , Dσ ⊆ C

Backward Subsumption U

(N ⊎ {C};U ⊎ {D};WO) ⇒STP (N ∪ {C};U;WO)

if C strictly subsumes D (Cσ ⊂ D)

326

Rewrite Rules for STP

Backward Subsumption WO

(N ⊎ {C};U;WO ⊎ {D}) ⇒STP (N ∪ {C};U;WO)

if C strictly subsumes D (Cσ ⊂ D)

Forward Subsumption Resolution

(N ⊎ {C1 ∨ L};U;WO) ⇒STP (N ∪ {C1};U;WO)

if C2 ∨ L′ ∈ (U ∪WO) such that C2σ ⊆ C1 and L′σ = L

Backward Subsumption Resolution U

(N ⊎ {C1 ∨ L};U ⊎ {C2 ∨ L′};WO) ⇒STP (N ∪ {C1 ∨

L};U ⊎ {C2};WO)

if C1σ ⊆ C2 and L′σ = L

327

Rewrite Rules for STP

Backward Subsumption Resolution WO

(N ⊎ {C1 ∨ L′};U;WO ⊎ {C2 ∨ L}) ⇒STP (N ∪ {C1 ∨

L};U;WO ⊎ {C2})

if C1σ ⊆ C2 and L′σ = L

Clause Processing

(N ⊎ {C};U;WO) ⇒STP (N;U ∪ {C};WO)

Inference Computation

(∅;U ⊎ {C};WO) ⇒STP (N;U;WO ∪ {C})

where N is the set of clauses derived by first-order superposition

inferences from C and clauses in WO.
328

Implementation

Although first-order and propositional subsumption just differ in

the matcher σ, propositional subsumption between two clauses

C and D can be decided in O(n), n = |C | + |D| whereas

first-order subsumption is NP-complete.

329

Hyperresolution

There are many variants of resolution. (We refer to [Bachmair,

Ganzinger: Resolution Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C .

If we perform an inference with C , then one of the selected

literals is eliminated.

Suppose that the remaining selected literals of C are again

selected in the conclusion. Then we must eliminate the

remaining selected literals one by one by further resolution

steps.

330

Hyperresolution

Hyperresolution replaces these successive steps by a single

inference. As for Sup≻sel, the calculus is parameterized by an

atom ordering ≻ and a selection function sel.

331

Hyperresolution

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨ Dn ∨ C)σ

with σ = mgu(A1
.
= B1, . . . ,An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di ;

(iii) the indicated occurrences of the ¬Ai are exactly the ones

selected by sel, or else nothing is selected in the right

premise and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to superposition (resolution), hyperresolution has to be

complemented by a factorization inference.

332

Hyperresolution

As we have seen, hyperresolution can be simulated by iterated

binary superposition.

However this yields intermediate clauses which HR might not

derive, and many of them might not be extendable into a full

HR inference.

333

3.12 Summary: Superposition Theorem Proving

• Superposition is a machine calculus.

• Subtle interleaving of enumerating instances and proving

inconsistency through the use of unification.

• Parameters: atom ordering ≻ and selection function sel.

On the non-ground level, ordering constraints can (only) be

solved approximatively.

• Completeness proof by constructing candidate interpreta-

tions from productive clauses C ∨ A, A ≻ C ; inferences with

those reduce counterexamples.

334

Summary: Superposition Theorem Proving

• Local restrictions of inferences via ≻ and sel

⇒ fewer proof variants.

• Global restrictions of the search space via elimination of

redundancy

⇒ computing with “smaller” clause sets;

⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings,

equality and more specific algebraic theories (lattices,

abelian groups, rings, fields) or arithmetic

⇒ further specialization of inference systems required.

335

Other Inference Systems

• Tableaux

• Instantiation-based methods

Resolution-based instance generation

Disconnection calculus

. . .

• Natural deduction

• Sequent calculus/Gentzen calculus

• Hilbert calculus

336

Other Inference Systems

One major problem with all those calculi concerning automation

is that they contain a rule either guessing instances or limiting

the use of formulas. So the procedure has to guess instances

and/or the number of copies of formulas. For example rules like:

Universal Quantification

S ∪ {∀x φ} ⇒ S ∪ {∀x φ} ∪ φ{x 7→ t}

for some ground term t ∈ TΣ

Existential Quantification

S ∪ {∃x φ} ⇒ S ∪ {∃x φ} ∪ φ{x 7→ a}

for some constant a new to φ

337

