3.3 Models, Validity, and Satisfiability

¢ is valid in A under assignment j3:
Ao o APB)9) =1

¢ is valid in A (A is a model of ¢):
Ao & A BEQ forall e X — Uy
¢ is valid (or is a tautology):
—¢ = AEo¢ forall Aec X-Alg

¢ is called satisfiable iff there exist A and 3 such that A, 5 = ¢.
Otherwise ¢ is called unsatisfiable.

215



Substitution Lemma

The following propositions, to be proved by structural induction,
hold for all >-algebras A, assignments (3, and substitutions o.

Lemma 3.3:
For any X2 -term t

A(B)(to) = A(B oo)(t),
where oo : X — A is the assignment o o(x) = A(8)(x0).

Proposition 3.4:
For any X-formula ¢, A(8)(¢o) = A(B o g)(¢).
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Substitution Lemma

Corollary 3.5:
A BE¢c < A Booc k=@

These theorems basically express that the syntactic concept
of substitution corresponds to the semantic concept of an

assignment.
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Entailment and Equivalence

¢ entails (implies) @ (or v is a consequence of ¢), written
¢ = 1, if for all A € L-Alg and 8 € X — U4, whenever

A, B E ¢, then A, B = 1.

¢ and v are called equivalent, written ¢ |= 1, if for all A € X-Alg
and S e X > Uygwehave A, =¢ < A [BFE1.
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Entailment and Equivalence

Proposition 3.6:
¢ entails v iff (¢ — 1) is valid

Proposition 3.7:
¢ and 1) are equivalent iff (¢ <> 1) is valid.

Extension to sets of formulas N in the “natural way’, e.g.,
N = ¢

< forall A € L-Algand g€ X = Uy: if A, B = 9, for all
Y € N, then A, B = ¢.
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal
as explained by the following proposition.

Proposition 3.8:
Let ¢ and 1) be formulas, let N be a set of formulas. Then

(i) ¢ is valid if and only if —¢ is unsatisfiable.
(i) ¢ = if and only if ¢ A =) is unsatisfiable.
(iii) N = if and only if NU{—=1} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it
Is sufficient to design a checker for unsatisfiability.
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Theory of a Structure

Let A € 2-Alg. The (first-order) theory of A is defined as
Th(A)={y e F(X) | A}

Problem of axiomatizability:

For which structures A can one axiomatize Th(.A), that is, can
one write down a formula ¢ (or a recursively enumerable set ¢

of formulas) such that

Th(A) ={vy | o =¥ }?

Analogously for sets of structures.
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Two Interesting Theories

Let Y pres = ({0/0,s/1,+/2}, 0) and Z, = (Z,0,s,+) its
standard interpretation on the integers. Th(Z.) is called
Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of 7Z, considers the natural

numbers N as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen,
JCSS, 16(3):323-332, 1978), and in 2EXPSPACE, using
automata-theoretic methods (and there is a constant ¢ > 0 such

that Th(Z.) € NTIME(22")).
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Two Interesting Theories

However, N, = (N, 0, s, +, %), the standard interpretation of
Ypa = ({0/0,s/1,4/2,%/2},0), has as theory the so-called
Peano arithmetic which is undecidable, not even recursively
enumerable.

Note: The choice of signature can make a big difference with
regard to the computational complexity of theories.
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3.4 Algorithmic Problems

Validity(¢): = o ?

Satisfiability(¢): ¢ satisfiable?

Entailment(¢,)): does ¢ entail 17

Model(A,9): A= ¢7

Solve(A,¢): find an assignment 3 such that A, 8 = ¢.
Solve(¢): find a substitution o such that = ¢o.

Abduce(¢): find ¥ with “certain properties” such that ¢ = ¢.

224



Godel’s Famous Theorems

1. For most signatures 2, validity is undecidable for 2-formulas.
(Later by Turing: Encode Turing machines as ¥ -formulas.)

2. For each signature X2, the set of valid 2-formulas is
recursively enumerable. (We will prove this by giving
complete deduction systems.)

3. For ¥ =¥ ps and N, = (N, 0, s, 4, *), the theory Th(N,) is
not recursively enumerable.

These complexity results motivate the study of subclasses of
formulas (fragments) of first-order logic

Q@: Can you think of any fragments of first-order logic for which
validity is decidable?
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Some Decidable Fragments

Some decidable fragments:

e Monadic class: no function symbols, all predicates unary;
validity is NEXP TIME-complete.

e Variable-free formulas without equality: satisfiability is

NP-complete. (why?)

e Variable-free Horn clauses (clauses with at most one positive

atom): entailment is decidable in linear time.

e Finite model checking is decidable in time polynomial in the

size of the structure and the formula.
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Plan

Lift superposition from propositional logic to first-order logic.
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3.5 Normal Forms and Skolemization

Study of normal forms motivated by
e reduction of logical concepts,
e efficient data structures for theorem proving,
e satisfiability preserving transformations (renaming),
e Skolem’s and Herbrand's theorem.
The main problem in first-order logic is the treatment of

quantifiers. The subsequent normal form transformations are

intended to eliminate many of them.
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Prenex Normal Form (Traditional)

Prenex formulas have the form

lel « .. Qan ¢1

where ¢ is quantifier-free and Q; € {V, 3}; we call Q1x1 ... Qnx,
the quantifier prefix and ¢ the matrix of the formula.
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Prenex Normal Form (Traditional)

Computing prenex normal form by the rewrite system = p:

(p= ) =p (@—=UV)A (Y — @)
-Qxp =p Qx—¢ (—Q)
((Qx¢) p ) =, Qy(o{ix—y}pi), pe{AV}
((@x¢) =) =p Qy(d{x— y} =),
(¢ p (xv)) =p Qy(¢p{x—y}), pE{NV,—}

Here y is always assumed to be some fresh variable and @

denotes the quantifier dual to @, i.e., V =4 and J=V.
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Skolemization

Intuition: replacement of dy by a concrete choice function
computing y from all the arguments y depends on.

Transformation =5 (to be applied outermost, not in

subformulas):
VX1, ..., Xpdy ¢ =s Vxg,....xnd{y — f(x1,..., %)}

where f /n is a new function symbol (Skolem function).
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Skolemization

Together: ¢ =% ¢ =% X
N~ —~—
prenex prenex, no 3
Theorem 3.9:

Let ¢, 1, and x as defined above and closed. Then
(i) ¢ and v are equivalent.
(ii) x = v but the converse is not true in general.

(iii) 1 satisfiable (X-Alg) < x satisfiable (¥’-Alg) where
Y/ = (QUSKF, M), if £ = (Q,1N).
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The Complete Picture

¢ = Qiy1--- Quyn ¥ (¥ quantifier-free)
=% VX1, .o r Xm X (m < n, x quantifier-free)
k n;
| e i=1 j=1
eave out ——
clauses C;
&

N ={C,..., C}iscalled the clausal (normal) form (CNF) of ¢.
Note: the variables in the clauses are implicitly universally
quantified.
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The Complete Picture

Theorem 3.10:

Let ¢ be closed. Then ¢’ = ¢. (The converse is not true in
general.)

Theorem 3.11:

Let ¢ be closed. Then ¢ is satisfiable iff ¢’ is satisfiable iff N is
satisfiable
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Optimization

The normal form algorithm described so far leaves lots of room
for optimization. Note that we only can preserve satisfiability

anyway due to Skolemization.

e size of the CNF is exponential when done naively; the
transformations we introduced already for propositional

logic avoid this exponential growth;
e we want to preserve the original formula structure;

e we want small arity of Skolem functions (see next section).

235



3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving

can be obtained using the following steps:
e produce a negation normal form (NNF)
e apply miniscoping
e rename all variables

e skolemize

236



Negation Normal Form (NNF)

Apply the rewrite system =-NNEF:

Plhr < 2]p =NNF O[(Y1 = 2) A (V2 — Y1),

if pol(¢, p) =1 or pol(¢, p) =0

Plhr < 2]p =NNF P[(W1 A 2) V (b2 A 1)),

if pol(¢, p) = —1
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Negation Normal Form (NNF)

QX ¢
—(¢ V1)
(¢ A )

¢ —

—¢

=~ NNF
=~ NNF
=~ NNF
=~ NNF

= NNF

Qx ¢
¢ N\ Y
2oV Y
¢V Y
¢
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Miniscoping

Apply the rewrite relation = 5. For the rules below we assume
that x occurs freely in 9, y, but x does not occur freely in ¢:

Qx (Y AN@) =wms (xP)A¢
Rx (v Vo) =ms (QxyY)Ve
Vx (Y Ax) =ms (Vxu)A(Vxx)
Ix(YpVyx) =wms (Ixv)V(Ixx)
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Variable Renaming

Rename all variables in ¢ such that there are no two different
positions p, g with ¢|, = Qx ¢ and ¢|, = Q'x x.
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Standard Skolemization

Apply the rewrite rule:

olAIxY]p, =sk  Pl{ix = f(y1, ... ¥n)}p

where p has minimal length,
{vi,..., Yn} are the free variables in 9x 1,

f/nis a new function symbol to ¢
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