
3.3 Models, Validity, and Satisfiability

φ is valid in A under assignment β:

A,β |= φ :⇔ A(β)(φ) = 1

φ is valid in A (A is a model of φ):

A |= φ :⇔ A,β |= φ, for all β ∈ X → UA

φ is valid (or is a tautology):

|= φ :⇔ A |= φ, for all A ∈ Σ-Alg

φ is called satisfiable iff there exist A and β such that A,β |= φ.

Otherwise φ is called unsatisfiable.
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Substitution Lemma

The following propositions, to be proved by structural induction,

hold for all Σ-algebras A, assignments β, and substitutions σ.

Lemma 3.3:

For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 3.4:

For any Σ-formula φ, A(β)(φσ) = A(β ◦ σ)(φ).
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Substitution Lemma

Corollary 3.5:

A,β |= φσ ⇔ A,β ◦ σ |= φ

These theorems basically express that the syntactic concept

of substitution corresponds to the semantic concept of an

assignment.
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Entailment and Equivalence

φ entails (implies) ψ (or ψ is a consequence of φ), written

φ |= ψ, if for all A ∈ Σ-Alg and β ∈ X → UA, whenever

A,β |= φ, then A,β |= ψ.

φ and ψ are called equivalent, written φ |=| ψ, if for all A ∈ Σ-Alg

and β ∈ X → UA we have A,β |= φ ⇔ A,β |= ψ.
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Entailment and Equivalence

Proposition 3.6:

φ entails ψ iff (φ→ ψ) is valid

Proposition 3.7:

φ and ψ are equivalent iff (φ↔ ψ) is valid.

Extension to sets of formulas N in the “natural way”, e. g.,

N |= φ

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA: if A,β |= ψ, for all

ψ ∈ N, then A,β |= φ.
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal

as explained by the following proposition.

Proposition 3.8:

Let φ and ψ be formulas, let N be a set of formulas. Then

(i) φ is valid if and only if ¬φ is unsatisfiable.

(ii) φ |= ψ if and only if φ ∧ ¬ψ is unsatisfiable.

(iii) N |= ψ if and only if N ∪ {¬ψ} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it

is sufficient to design a checker for unsatisfiability.
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Theory of a Structure

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {ψ ∈ FΣ(X ) | A |= ψ }

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can

one write down a formula φ (or a recursively enumerable set φ

of formulas) such that

Th(A) = {ψ | φ |= ψ }?

Analogously for sets of structures.
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Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, ∅) and Z+ = (Z, 0, s, +) its

standard interpretation on the integers. Th(Z+) is called

Presburger arithmetic (M. Presburger, 1929). (There is no

essential difference when one, instead of Z, considers the natural

numbers N as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen,

JCSS, 16(3):323–332, 1978), and in 2EXPSPACE, using

automata-theoretic methods (and there is a constant c ≥ 0 such

that Th(Z+) 6∈ NTIME(22
cn

)).
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Two Interesting Theories

However, N∗ = (N, 0, s, +, ∗), the standard interpretation of

ΣPA = ({0/0, s/1,+/2, ∗/2}, ∅), has as theory the so-called

Peano arithmetic which is undecidable, not even recursively

enumerable.

Note: The choice of signature can make a big difference with

regard to the computational complexity of theories.
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3.4 Algorithmic Problems

Validity(φ): |= φ ?

Satisfiability(φ): φ satisfiable?

Entailment(φ,ψ): does φ entail ψ?

Model(A,φ): A |= φ?

Solve(A,φ): find an assignment β such that A,β |= φ.

Solve(φ): find a substitution σ such that |= φσ.

Abduce(φ): find ψ with “certain properties” such that ψ |= φ.
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Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(Later by Turing: Encode Turing machines as Σ-formulas.)

2. For each signature Σ, the set of valid Σ-formulas is

recursively enumerable. (We will prove this by giving

complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is

not recursively enumerable.

These complexity results motivate the study of subclasses of

formulas (fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which

validity is decidable?
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Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary;

validity is NEXPTIME-complete.

• Variable-free formulas without equality: satisfiability is

NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive

atom): entailment is decidable in linear time.

• Finite model checking is decidable in time polynomial in the

size of the structure and the formula.

226



Plan

Lift superposition from propositional logic to first-order logic.
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3.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving,

• satisfiability preserving transformations (renaming),

• Skolem’s and Herbrand’s theorem.

The main problem in first-order logic is the treatment of

quantifiers. The subsequent normal form transformations are

intended to eliminate many of them.
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Prenex Normal Form (Traditional)

Prenex formulas have the form

Q1x1 . . .Qnxn φ,

where φ is quantifier-free and Qi ∈ {∀,∃}; we call Q1x1 . . .Qnxn

the quantifier prefix and φ the matrix of the formula.
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Prenex Normal Form (Traditional)

Computing prenex normal form by the rewrite system ⇒P :

(φ↔ ψ) ⇒P (φ→ ψ) ∧ (ψ → φ)

¬Qxφ ⇒P Qx¬φ (¬Q)

((Qxφ) ρ ψ) ⇒P Qy(φ{x 7→ y} ρ ψ), ρ ∈ {∧,∨}

((Qxφ)→ ψ) ⇒P Qy(φ{x 7→ y} → ψ),

(φ ρ (Qxψ)) ⇒P Qy(φ ρ ψ{x 7→ y}), ρ ∈ {∧,∨,→}

Here y is always assumed to be some fresh variable and Q

denotes the quantifier dual to Q, i. e., ∀ = ∃ and ∃ = ∀.

230



Skolemization

Intuition: replacement of ∃y by a concrete choice function

computing y from all the arguments y depends on.

Transformation ⇒S (to be applied outermost, not in

subformulas):

∀x1, . . . , xn∃y φ ⇒S ∀x1, . . . , xn φ{y 7→ f (x1, . . . , xn)}

where f /n is a new function symbol (Skolem function).
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Skolemization

Together: φ⇒∗
P ψ︸︷︷︸
prenex

⇒∗
S χ︸︷︷︸
prenex, no ∃

Theorem 3.9:

Let φ, ψ, and χ as defined above and closed. Then

(i) φ and ψ are equivalent.

(ii) χ |= ψ but the converse is not true in general.

(iii) ψ satisfiable (Σ-Alg) ⇔ χ satisfiable (Σ′-Alg) where

Σ′ = (Ω ∪ SKF , Π), if Σ = (Ω,Π).
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The Complete Picture

φ ⇒∗
P Q1y1 . . .Qnyn ψ (ψ quantifier-free)

⇒∗
S ∀x1, . . . , xm χ (m ≤ n, χ quantifier-free)

⇒∗
OCNF ∀x1, . . . , xm︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

φ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of φ.

Note: the variables in the clauses are implicitly universally

quantified.
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The Complete Picture

Theorem 3.10:

Let φ be closed. Then φ′ |= φ. (The converse is not true in

general.)

Theorem 3.11:

Let φ be closed. Then φ is satisfiable iff φ′ is satisfiable iff N is

satisfiable
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Optimization

The normal form algorithm described so far leaves lots of room

for optimization. Note that we only can preserve satisfiability

anyway due to Skolemization.

• size of the CNF is exponential when done naively; the

transformations we introduced already for propositional

logic avoid this exponential growth;

• we want to preserve the original formula structure;

• we want small arity of Skolem functions (see next section).
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3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving

can be obtained using the following steps:

• produce a negation normal form (NNF)

• apply miniscoping

• rename all variables

• skolemize
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Negation Normal Form (NNF)

Apply the rewrite system ⇒NNF:

φ[ψ1 ↔ ψ2]p ⇒NNF φ[(ψ1 → ψ2) ∧ (ψ2 → ψ1)]p

if pol(φ, p) = 1 or pol(φ, p) = 0

φ[ψ1 ↔ ψ2]p ⇒NNF φ[(ψ1 ∧ ψ2) ∨ (¬ψ2 ∧ ¬ψ1)]p

if pol(φ, p) = −1
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Negation Normal Form (NNF)

¬Qx φ ⇒NNF Qx ¬φ

¬(φ ∨ ψ) ⇒NNF ¬φ ∧ ¬ψ

¬(φ ∧ ψ) ⇒NNF ¬φ ∨ ¬ψ

φ→ ψ ⇒NNF ¬φ ∨ ψ

¬¬φ ⇒NNF φ
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Miniscoping

Apply the rewrite relation ⇒MS. For the rules below we assume

that x occurs freely in ψ, χ, but x does not occur freely in φ:

Qx (ψ ∧ φ) ⇒MS (Qx ψ) ∧ φ

Qx (ψ ∨ φ) ⇒MS (Qx ψ) ∨ φ

∀x (ψ ∧ χ) ⇒MS (∀x ψ) ∧ (∀x χ)

∃x (ψ ∨ χ) ⇒MS (∃x ψ) ∨ (∃x χ)
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Variable Renaming

Rename all variables in φ such that there are no two different

positions p, q with φ|p = Qx ψ and φ|q = Q′x χ.
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Standard Skolemization

Apply the rewrite rule:

φ[∃x ψ]p ⇒SK φ[ψ{x 7→ f (y1, . . . , yn)}]p

where p has minimal length,

{y1, . . . , yn} are the free variables in ∃x ψ,

f /n is a new function symbol to φ
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