3.3 Models, Validity, and Satisfiability

 ϕ is valid in \mathcal{A} under assignment β :

$$\mathcal{A},eta\models\phi$$
 : \Leftrightarrow $\mathcal{A}(eta)(\phi)=1$

 ϕ is valid in \mathcal{A} (\mathcal{A} is a model of ϕ):

$$\mathcal{A} \models \phi : \Leftrightarrow \mathcal{A}, \beta \models \phi, \text{ for all } \beta \in X \to U_{\mathcal{A}}$$

 ϕ is valid (or is a tautology):

$$\models \phi \quad :\Leftrightarrow \quad \mathcal{A} \models \phi$$
, for all $\mathcal{A} \in \Sigma$ -Alg

 ϕ is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models \phi$. Otherwise ϕ is called unsatisfiable. The following propositions, to be proved by structural induction, hold for all Σ -algebras \mathcal{A} , assignments β , and substitutions σ .

Lemma 3.3: For any Σ -term t

$$\mathcal{A}(eta)(t\sigma)=\mathcal{A}(eta\circ\sigma)(t)$$
,

where $\beta \circ \sigma : X \to A$ is the assignment $\beta \circ \sigma(x) = A(\beta)(x\sigma)$.

Proposition 3.4:

For any Σ -formula ϕ , $\mathcal{A}(\beta)(\phi\sigma) = \mathcal{A}(\beta \circ \sigma)(\phi)$.

Substitution Lemma

Corollary 3.5: $\mathcal{A}, \beta \models \phi \sigma \iff \mathcal{A}, \beta \circ \sigma \models \phi$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Entailment and Equivalence

 ϕ entails (implies) ψ (or ψ is a consequence of ϕ), written $\phi \models \psi$, if for all $\mathcal{A} \in \Sigma$ -Alg and $\beta \in X \to U_{\mathcal{A}}$, whenever $\mathcal{A}, \beta \models \phi$, then $\mathcal{A}, \beta \models \psi$.

 ϕ and ψ are called equivalent, written $\phi \models \psi$, if for all $\mathcal{A} \in \Sigma$ -Alg and $\beta \in X \to U_{\mathcal{A}}$ we have $\mathcal{A}, \beta \models \phi \iff \mathcal{A}, \beta \models \psi$.

Entailment and Equivalence

Proposition 3.6: ϕ entails ψ iff ($\phi \rightarrow \psi$) is valid

Proposition 3.7:

 ϕ and ψ are equivalent iff ($\phi \leftrightarrow \psi$) is valid.

Extension to sets of formulas N in the "natural way", e.g., $\textit{N} \models \phi$

: \Leftrightarrow for all $\mathcal{A} \in \Sigma$ -Alg and $\beta \in X \to U_{\mathcal{A}}$: if $\mathcal{A}, \beta \models \psi$, for all $\psi \in N$, then $\mathcal{A}, \beta \models \phi$.

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.8:

Let ϕ and ψ be formulas, let ${\it N}$ be a set of formulas. Then

(i) ϕ is valid if and only if $\neg \phi$ is unsatisfiable.

(ii) $\phi \models \psi$ if and only if $\phi \land \neg \psi$ is unsatisfiable.

(iii) $N \models \psi$ if and only if $N \cup \{\neg\psi\}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability. Let $\mathcal{A} \in \Sigma$ -Alg. The (first-order) theory of \mathcal{A} is defined as

$$Th(\mathcal{A}) = \{ \psi \in \mathsf{F}_{\Sigma}(X) \mid \mathcal{A} \models \psi \}$$

Problem of axiomatizability:

For which structures \mathcal{A} can one axiomatize $Th(\mathcal{A})$, that is, can one write down a formula ϕ (or a recursively enumerable set ϕ of formulas) such that

$$Th(\mathcal{A}) = \{ \psi \mid \phi \models \psi \}?$$

Analogously for sets of structures.

Let $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \emptyset)$ and $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +)$ its standard interpretation on the integers. $Th(\mathbb{Z}_+)$ is called Presburger arithmetic (M. Presburger, 1929). (There is no essential difference when one, instead of \mathbb{Z} , considers the natural numbers \mathbb{N} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \ge 0$ such that $Th(\mathbb{Z}_+) \notin \text{NTIME}(2^{2^{cn}})$).

However, $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *)$, the standard interpretation of $\Sigma_{PA} = (\{0/0, s/1, +/2, */2\}, \emptyset)$, has as theory the so-called Peano arithmetic which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the computational complexity of theories.

Validity(ϕ): $\models \phi$?

Satisfiability(ϕ): ϕ satisfiable?

Entailment(ϕ , ψ): does ϕ entail ψ ?

Model(A, ϕ): $A \models \phi$?

Solve(\mathcal{A}, ϕ): find an assignment β such that $\mathcal{A}, \beta \models \phi$.

Solve(ϕ): find a substitution σ such that $\models \phi \sigma$.

Abduce(ϕ **):** find ψ with "certain properties" such that $\psi \models \phi$.

- 1. For most signatures Σ , validity is undecidable for Σ -formulas. (Later by Turing: Encode Turing machines as Σ -formulas.)
- 2. For each signature Σ , the set of valid Σ -formulas is recursively enumerable. (We will prove this by giving complete deduction systems.)
- 3. For $\Sigma = \Sigma_{PA}$ and $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *)$, the theory $Th(\mathbb{N}_*)$ is not recursively enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?

Some decidable fragments:

- Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-complete.
- Variable-free formulas without equality: satisfiability is NP-complete. (why?)
- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.
- Finite model checking is decidable in time polynomial in the size of the structure and the formula.

Lift superposition from propositional logic to first-order logic.

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving,
- satisfiability preserving transformations (renaming),
- Skolem's and Herbrand's theorem.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form (Traditional)

Prenex formulas have the form

 $Q_1 x_1 \ldots Q_n x_n \phi$,

where ϕ is quantifier-free and $Q_i \in \{\forall, \exists\}$; we call $Q_1 x_1 \dots Q_n x_n$ the quantifier prefix and ϕ the matrix of the formula. Computing prenex normal form by the rewrite system \Rightarrow_P :

$$\begin{array}{ll} (\phi \leftrightarrow \psi) & \Rightarrow_{P} & (\phi \rightarrow \psi) \land (\psi \rightarrow \phi) \\ \neg Q x \phi & \Rightarrow_{P} & \overline{Q} x \neg \phi & (\neg Q) \\ ((Q x \phi) \rho \psi) & \Rightarrow_{P} & Q y (\phi \{ x \mapsto y \} \rho \psi), \ \rho \in \{ \land, \lor \} \\ \overline{(Q x \phi) \rightarrow \psi} & \Rightarrow_{P} & \overline{Q} y (\phi \{ x \mapsto y \} \rightarrow \psi), \\ (\phi \rho (Q x \psi)) & \Rightarrow_{P} & Q y (\phi \rho \psi \{ x \mapsto y \}), \ \rho \in \{ \land, \lor, \rightarrow \} \end{array}$$

Here y is always assumed to be some fresh variable and \overline{Q} denotes the quantifier dual to Q, i.e., $\overline{\forall} = \exists$ and $\overline{\exists} = \forall$.

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_S (to be applied outermost, *not* in subformulas):

 $\forall x_1,\ldots,x_n \exists y \phi \Rightarrow_S \forall x_1,\ldots,x_n \phi\{y \mapsto f(x_1,\ldots,x_n)\}$

where f/n is a new function symbol (Skolem function).

Theorem 3.9:

Let $\phi,\,\psi,$ and χ as defined above and closed. Then

(i) ϕ and ψ are equivalent.

(ii) $\chi \models \psi$ but the converse is not true in general.

(iii) ψ satisfiable (Σ -Alg) $\Leftrightarrow \chi$ satisfiable (Σ '-Alg) where $\Sigma' = (\Omega \cup SKF, \Pi)$, if $\Sigma = (\Omega, \Pi)$.

 $\phi \implies^{*}_{P} Q_{1}y_{1} \dots Q_{n}y_{n}\psi \qquad (\psi \text{ quantifier-free})$ $\Rightarrow^{*}_{S} \forall x_{1}, \dots, x_{m}\chi \qquad (m \leq n, \chi \text{ quantifier-free})$ $\Rightarrow^{*}_{OCNF} \underbrace{\forall x_{1}, \dots, x_{m}}_{\text{leave out}} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{ij}}_{\text{clauses } C_{i}}$

 $N = \{C_1, \ldots, C_k\}$ is called the clausal (normal) form (CNF) of ϕ . *Note:* the variables in the clauses are implicitly universally quantified. Theorem 3.10: Let ϕ be closed. Then $\phi' \models \phi$. (The converse is not true in general.)

Theorem 3.11: Let ϕ be closed. Then ϕ is satisfiable iff ϕ' is satisfiable iff N is satisfiable The normal form algorithm described so far leaves lots of room for optimization. Note that we only can preserve satisfiability anyway due to Skolemization.

- size of the CNF is exponential when done naively; the transformations we introduced already for propositional logic avoid this exponential growth;
- we want to preserve the original formula structure;
- we want small arity of Skolem functions (see next section).

3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving can be obtained using the following steps:

- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- skolemize

Negation Normal Form (NNF)

Apply the rewrite system \Rightarrow_{NNF} :

$$\phi[\psi_1 \leftrightarrow \psi_2]_{\rho} \Rightarrow_{\mathsf{NNF}} \phi[(\psi_1 \rightarrow \psi_2) \land (\psi_2 \rightarrow \psi_1)]_{
ho}$$

if $\mathsf{pol}(\phi, \rho) = 1$ or $\mathsf{pol}(\phi, \rho) = 0$

 $\phi[\psi_1 \leftrightarrow \psi_2]_{
ho} \Rightarrow_{\mathsf{NNF}} \phi[(\psi_1 \wedge \psi_2) \lor (\neg \psi_2 \wedge \neg \psi_1)]_{
ho}$ if pol $(\phi, p) = -1$

Negation Normal Form (NNF)

$$\neg Q \times \phi \implies_{\mathsf{NNF}} \overline{Q} \times \neg \phi$$
$$\neg (\phi \lor \psi) \implies_{\mathsf{NNF}} \neg \phi \land \neg \psi$$
$$\neg (\phi \land \psi) \implies_{\mathsf{NNF}} \neg \phi \lor \neg \psi$$
$$\phi \rightarrow \psi \implies_{\mathsf{NNF}} \neg \phi \lor \psi$$
$$\neg \neg \phi \implies_{\mathsf{NNF}} \phi$$

Miniscoping

Apply the rewrite relation \Rightarrow_{MS} . For the rules below we assume that x occurs freely in ψ , χ , but x does not occur freely in ϕ :

$$\begin{array}{ll} Qx \left(\psi \wedge \phi\right) & \Rightarrow_{\mathsf{MS}} & \left(Qx \psi\right) \wedge \phi \\ Qx \left(\psi \vee \phi\right) & \Rightarrow_{\mathsf{MS}} & \left(Qx \psi\right) \vee \phi \\ \forall x \left(\psi \wedge \chi\right) & \Rightarrow_{\mathsf{MS}} & \left(\forall x \psi\right) \wedge \left(\forall x \chi\right) \\ \exists x \left(\psi \vee \chi\right) & \Rightarrow_{\mathsf{MS}} & \left(\exists x \psi\right) \vee \left(\exists x \chi\right) \end{array}$$

Rename all variables in ϕ such that there are no two different positions p, q with $\phi|_p = Qx \psi$ and $\phi|_q = Q' x \chi$.

Apply the rewrite rule:

 $\phi[\exists x \, \psi]_p \quad \Rightarrow_{\mathsf{SK}} \quad \phi[\psi\{x \mapsto f(y_1, \dots, y_n)\}]_p$ where p has minimal length, $\{y_1, \dots, y_n\} \text{ are the free variables in } \exists x \, \psi,$ $f/n \text{ is a new function symbol to } \phi$