
2.6 The CDCL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite

set N of clauses), check whether it is satisfiable (and optionally:

output one solution, if it is satisfiable).

Assumption:

Clauses contain neither duplicated literals nor complementary

literals.

CDCL: Conflict Driven Clause Learning
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Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N.

A |= C if and only if A |= L for some literal L ∈ C .
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Partial Valuations

Since we will construct satisfying valuations incrementally,

we consider partial valuations (that is, partial mappings

A : Σ→ {0, 1}).

Every partial valuation A corresponds to a set M of literals that

does not contain complementary literals, and vice versa:

A(L) is true, if L ∈ M .

A(L) is false, if L ∈ M .

A(L) is undefined, if neither L ∈ M nor L ∈ M .

We will use A and M interchangeably. Note that truth of a

literal with respect to M is defined differently than for NI .
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Partial Valuations

A clause is true under a partial valuation A (or under a

set M of literals) if one of its literals is true; it is false (or

“conflicting”) if all its literals are false; otherwise it is undefined

(or “unresolved”).
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Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C ,

such that all literals but one in C are false under A, then the

following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.
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Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined

under A. If P occurs only positively (or only negatively) in

the unresolved clauses in N, then the following properties are

equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

assigns 1 (0) to P .

P is called a pure literal.
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The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(literal set M, clause set N) {

if (all clauses in N are true under M) return true;

elsif (some clause in N is false under M) return false;

elsif (N contains unit clause P) return DPLL(M ∪ {P}, N);

elsif (N contains unit clause ¬P) return DPLL(M ∪ {¬P}, N);

elsif (N contains pure literal P) return DPLL(M ∪ {P}, N);

elsif (N contains pure literal ¬P) return DPLL(M ∪ {¬P}, N);

else {

let P be some undefined variable in N;

if (DPLL(M ∪ {¬P}, N)) return true;

else return DPLL(M ∪ {P}, N);

}

}
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The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with an empty literal set and the clause

set N.
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2.7 From DPLL to CDCL

In practice, there are several changes to the procedure:

The pure literal check is only done while preprocessing

(otherwise is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;

the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one

level).

CDCL = DPLL + Information is reused by learning + Restart

+ Specific Data Structures
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Branching Heuristics

Choosing the right undefined variable to branch is important for

efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be

recomputed too frequently.

In general: choose variables that occur frequently, prefer

variables from recent conflicts.
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The Deduction Algorithm

For applying the unit rule, we need to know the number of

literals in a clause that are not false.

Maintaining this number is expensive, however.
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The Deduction Algorithm

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched”

literals.

For each variable P , keep a list of all clauses in which P is

watched and a list of all clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses

in which P (or ¬P) is watched and watch another literal (that

is true or undefined) in this clause if possible.

Watched literal information need not be restored upon

backtracking.
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Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further

branches.

Method: Learning:

If a conflicting clause is found, derive a new clause from the

conflict and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;

therefore it may become necessary to delete some of them

afterwards to save space.
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Backjumping

Related technique:

non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip

over that backtrack level.

149



Restart

Runtimes of DPLL-style procedures depend extremely on the

choice of branching variables.

If no solution is found within a certain time limit, it can be

useful to restart from scratch with an adopted variable selection

heuristics, but learned clauses are kept.

In particular, after learning a unit clause a restart is done.
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Formalizing DPLL with Refinements

The DPLL procedure is modelled by a transition relation ⇒DPLL

on a set of states.

States:

• fail

• (M ;N)

where M is a list of annotated literals and N is a set of clauses.

We use + to right add a literal or a list of literals to M

Annotated literal:

• L: deduced literal, due to unit propagation.

• Ld: decision literal (guessed literal).
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Formalizing DPLL with Refinements

Unit Propagate:

(M ;N ∪ {C ∨ L}) ⇒DPLL (M + L;N ∪ {C ∨ L})

if C is false under M and L is undefined under M .

Decide:

(M ;N) ⇒DPLL (M + Ld;N)

if L is undefined under M and contained in N.

Fail:

(M ;N ∪ {C}) ⇒DPLL fail

if C is false under M and M contains no decision literals.
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Formalizing DPLL with Refinements

Backjump:

(M ′ + Ld +M ′′;N) ⇒DPLL (M ′ + L′;N)

if there is some “backjump clause” C ∨ L′ such that

N |= C ∨ L′,

C is false under M ′, and

L′ is undefined under M ′.
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Formalizing DPLL with Refinements

We will see later that the Backjump rule is always applicable,

if the list of literals M contains at least one decision literal and

some clause in N is false under M .

There are many possible backjump clauses. One candidate:

L1 ∨ . . . ∨ Ln, where the Li are all the decision literals in

M + Ld +M ′. (But usually there are better choices.)
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Formalizing DPLL with Refinements

Lemma 2.16:

If we reach a state (M ;N) starting from (nil;N), then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from N and decision

literals occurring before L in M .
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Formalizing DPLL with Refinements

Lemma 2.17:

Every derivation starting from (nil;N) terminates.
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Formalizing DPLL with Refinements

Lemma 2.18:

Suppose that we reach a state (M ;N) starting from (nil;N)

such that some clause D ∈ N is false under M . Then:

(1) If M does not contain any decision literal, then “Fail” is

applicable.

(2) Otherwise, “Backjump” is applicable.
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Formalizing DPLL with Refinements

Theorem 2.19:

(1) If we reach a final state (M ;N) starting from (nil;N), then

N is satisfiable and M is a model of N.

(2) If we reach a final state fail starting from (nil;N), then N is

unsatisfiable.
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