
2.6 The CDCL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite

set N of clauses), check whether it is satisfiable (and optionally:

output one solution, if it is satisfiable).

Assumption:

Clauses contain neither duplicated literals nor complementary

literals.

CDCL: Conflict Driven Clause Learning

136

Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N.

A |= C if and only if A |= L for some literal L ∈ C .

137

Partial Valuations

Since we will construct satisfying valuations incrementally,

we consider partial valuations (that is, partial mappings

A : Σ→ {0, 1}).

Every partial valuation A corresponds to a set M of literals that

does not contain complementary literals, and vice versa:

A(L) is true, if L ∈ M .

A(L) is false, if L ∈ M .

A(L) is undefined, if neither L ∈ M nor L ∈ M .

We will use A and M interchangeably. Note that truth of a

literal with respect to M is defined differently than for NI .

138

Partial Valuations

A clause is true under a partial valuation A (or under a

set M of literals) if one of its literals is true; it is false (or

“conflicting”) if all its literals are false; otherwise it is undefined

(or “unresolved”).

139

Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C ,

such that all literals but one in C are false under A, then the

following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

140

Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined

under A. If P occurs only positively (or only negatively) in

the unresolved clauses in N, then the following properties are

equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

assigns 1 (0) to P .

P is called a pure literal.

141

The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(literal set M, clause set N) {

if (all clauses in N are true under M) return true;

elsif (some clause in N is false under M) return false;

elsif (N contains unit clause P) return DPLL(M ∪ {P}, N);

elsif (N contains unit clause ¬P) return DPLL(M ∪ {¬P}, N);

elsif (N contains pure literal P) return DPLL(M ∪ {P}, N);

elsif (N contains pure literal ¬P) return DPLL(M ∪ {¬P}, N);

else {

let P be some undefined variable in N;

if (DPLL(M ∪ {¬P}, N)) return true;

else return DPLL(M ∪ {P}, N);

}

}

142

The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with an empty literal set and the clause

set N.

143

2.7 From DPLL to CDCL

In practice, there are several changes to the procedure:

The pure literal check is only done while preprocessing

(otherwise is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;

the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one

level).

CDCL = DPLL + Information is reused by learning + Restart

+ Specific Data Structures

144

Branching Heuristics

Choosing the right undefined variable to branch is important for

efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be

recomputed too frequently.

In general: choose variables that occur frequently, prefer

variables from recent conflicts.

145

The Deduction Algorithm

For applying the unit rule, we need to know the number of

literals in a clause that are not false.

Maintaining this number is expensive, however.

146

The Deduction Algorithm

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched”

literals.

For each variable P , keep a list of all clauses in which P is

watched and a list of all clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses

in which P (or ¬P) is watched and watch another literal (that

is true or undefined) in this clause if possible.

Watched literal information need not be restored upon

backtracking.

147

Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further

branches.

Method: Learning:

If a conflicting clause is found, derive a new clause from the

conflict and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;

therefore it may become necessary to delete some of them

afterwards to save space.

148

Backjumping

Related technique:

non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip

over that backtrack level.

149

Restart

Runtimes of DPLL-style procedures depend extremely on the

choice of branching variables.

If no solution is found within a certain time limit, it can be

useful to restart from scratch with an adopted variable selection

heuristics, but learned clauses are kept.

In particular, after learning a unit clause a restart is done.

150

Formalizing DPLL with Refinements

The DPLL procedure is modelled by a transition relation ⇒DPLL

on a set of states.

States:

• fail

• (M ;N)

where M is a list of annotated literals and N is a set of clauses.

We use + to right add a literal or a list of literals to M

Annotated literal:

• L: deduced literal, due to unit propagation.

• Ld: decision literal (guessed literal).

151

Formalizing DPLL with Refinements

Unit Propagate:

(M ;N ∪ {C ∨ L}) ⇒DPLL (M + L;N ∪ {C ∨ L})

if C is false under M and L is undefined under M .

Decide:

(M ;N) ⇒DPLL (M + Ld;N)

if L is undefined under M and contained in N.

Fail:

(M ;N ∪ {C}) ⇒DPLL fail

if C is false under M and M contains no decision literals.

152

Formalizing DPLL with Refinements

Backjump:

(M ′ + Ld +M ′′;N) ⇒DPLL (M ′ + L′;N)

if there is some “backjump clause” C ∨ L′ such that

N |= C ∨ L′,

C is false under M ′, and

L′ is undefined under M ′.

153

Formalizing DPLL with Refinements

We will see later that the Backjump rule is always applicable,

if the list of literals M contains at least one decision literal and

some clause in N is false under M .

There are many possible backjump clauses. One candidate:

L1 ∨ . . . ∨ Ln, where the Li are all the decision literals in

M + Ld +M ′. (But usually there are better choices.)

154

Formalizing DPLL with Refinements

Lemma 2.16:

If we reach a state (M ;N) starting from (nil;N), then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from N and decision

literals occurring before L in M .

155

Formalizing DPLL with Refinements

Lemma 2.17:

Every derivation starting from (nil;N) terminates.

156

Formalizing DPLL with Refinements

Lemma 2.18:

Suppose that we reach a state (M ;N) starting from (nil;N)

such that some clause D ∈ N is false under M . Then:

(1) If M does not contain any decision literal, then “Fail” is

applicable.

(2) Otherwise, “Backjump” is applicable.

157

Formalizing DPLL with Refinements

Theorem 2.19:

(1) If we reach a final state (M ;N) starting from (nil;N), then

N is satisfiable and M is a model of N.

(2) If we reach a final state fail starting from (nil;N), then N is

unsatisfiable.

158

