Substitution Theorem

Proposition 2.7:

Let ϕ_1 and ϕ_2 be equivalent formulas, and $\psi[\phi_1]_p$ be a formula in which ϕ_1 occurs as a subformula at position p.

Then $\psi[\phi_1]_p$ is equivalent to $\psi[\phi_2]_p$.

Proposition 2.8:

The following equivalences are valid for all formulas ϕ , ψ , χ :

$(\phi \land \phi) \leftrightarrow \phi$	$Idempotency \ \land \\$
$(\phi \lor \phi) \leftrightarrow \phi$	Idempotency ∨
$(\phi \wedge \psi) \leftrightarrow (\psi \wedge \phi)$	Commutativity \land
$(\phi \lor \psi) \leftrightarrow (\psi \lor \phi)$	Commutativity \vee
$(\phi \wedge (\psi \wedge \chi)) \leftrightarrow ((\phi \wedge \psi) \wedge \chi)$	Associativity \land
$(\phi \lor (\psi \lor \chi)) \leftrightarrow ((\phi \lor \psi) \lor \chi)$	Associativity \lor
$(\phi \wedge (\psi \vee \chi)) \leftrightarrow (\phi \wedge \psi) \vee (\phi \wedge \chi)$	Distributivity $\land \lor$
$(\phi \lor (\psi \land \chi)) \leftrightarrow (\phi \lor \psi) \land (\phi \lor \chi)$	Distributivity $\vee \wedge$

$(\phi \land \phi) \leftrightarrow \phi$	Absorption \land
$(\phi \lor \phi) \leftrightarrow \phi$	Absorption \lor
$(\phi \land (\phi \lor \psi)) \leftrightarrow \phi$	Absorption $\land \lor$
$(\phi \lor (\phi \land \psi)) \leftrightarrow \phi$	Absorption $\lor \land$
$(\phi \land \neg \phi) \leftrightarrow \bot$	Introduction \bot
$(\phi \vee \neg \phi) \leftrightarrow \top$	Introduction \top

$$\neg(\phi \lor \psi) \leftrightarrow (\neg \phi \land \neg \psi) \quad \text{De Morgan } \neg \lor \\
\neg(\phi \land \psi) \leftrightarrow (\neg \phi \lor \neg \psi) \quad \text{De Morgan } \neg \land \\
\neg \bot \leftrightarrow \bot \quad \text{Propagate } \neg \bot \\
\neg \bot \leftrightarrow \top \quad \text{Propagate } \neg \bot$$

$(\phi \wedge \top) \leftrightarrow \phi$	Absorption $\top \land$
$(\phi \lor \bot) \leftrightarrow \phi$	Absorption $\bot \lor$
$(\phi ightarrow \bot) \leftrightarrow \neg \phi$	Eliminate \perp \rightarrow
$(\phi \leftrightarrow \bot) \leftrightarrow \neg \phi$	Eliminate $\bot \leftrightarrow$
$(\phi \leftrightarrow \top) \leftrightarrow \phi$	Eliminate $\top \leftrightarrow$
$(\phi \lor \top) \leftrightarrow \top$	Propagate $ op$
$(\phi \land \bot) \leftrightarrow \bot$	Propagate ot

$$(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi) \qquad \text{Eliminate} \to$$

$$(\phi \leftrightarrow \psi) \leftrightarrow (\phi \to \psi) \land (\psi \to \phi) \qquad \text{Eliminate1} \leftrightarrow$$

$$(\phi \leftrightarrow \psi) \leftrightarrow (\phi \land \psi) \lor (\neg \phi \land \neg \psi) \qquad \text{Eliminate2} \leftrightarrow$$

For simplification purposes the equivalences are typically applied as left to right rules.

2.4 Normal Forms

We define conjunctions of formulas as follows:

$$\bigwedge_{i=1}^{0} \phi_{i} = \top.$$

$$\bigwedge_{i=1}^{1} \phi_{i} = \phi_{1}.$$

$$\bigwedge_{i=1}^{n+1} \phi_{i} = \bigwedge_{i=1}^{n} \phi_{i} \wedge \phi_{n+1}.$$

and analogously disjunctions:

$$\bigvee_{i=1}^{0} \phi_{i} = \bot.$$

$$\bigvee_{i=1}^{1} \phi_{i} = \phi_{1}.$$

$$\bigvee_{i=1}^{n+1} \phi_{i} = \bigvee_{i=1}^{n} \phi_{i} \lor \phi_{n+1}.$$

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

CNF and **DNF**

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted? are duplicated literals permitted? are empty disjunctions/conjunctions permitted?

CNF and **DNF**

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Proposition 2.9:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:

We consider the case of CNF and propose a naive algorithm.

Apply the following rules as long as possible (modulo associativity and commutativity of \land and \lor):

Step 1: Eliminate equivalences:

$$(\phi \leftrightarrow \psi) \Rightarrow_{\mathsf{ECNF}} (\phi \to \psi) \land (\psi \to \phi)$$

Step 2: Eliminate implications:

$$(\phi \to \psi) \Rightarrow_{\mathsf{ECNF}} (\neg \phi \lor \psi)$$

Step 3: Push negations downward:

$$\neg(\phi \lor \psi) \Rightarrow_{\mathsf{ECNF}} (\neg \phi \land \neg \psi)$$

$$\neg(\phi \land \psi) \Rightarrow_{\mathsf{ECNF}} (\neg \phi \lor \neg \psi)$$

Step 4: Eliminate multiple negations:

$$\neg \neg \phi \Rightarrow_{\mathsf{ECNF}} \phi$$

Step 5: Push disjunctions downward:

$$(\phi \land \psi) \lor \chi \Rightarrow_{\mathsf{ECNF}} (\phi \lor \chi) \land (\psi \lor \chi)$$

Step 6: Eliminate \top and \bot :

$$(\phi \land \top) \Rightarrow_{\mathsf{ECNF}} \phi$$

$$(\phi \land \bot) \Rightarrow_{\mathsf{ECNF}} \bot$$

$$(\phi \lor \top) \Rightarrow_{\mathsf{ECNF}} \top$$

$$(\phi \lor \bot) \Rightarrow_{\mathsf{ECNF}} \phi$$

$$\neg \bot \Rightarrow_{\mathsf{ECNF}} \top$$

$$\neg \top \Rightarrow_{\mathsf{ECNF}} \bot$$

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions have to be pushed downward in step 5.

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal

"find a formula ψ in CNF such that $\phi \models \psi$ " is unpractical.

But if we relax the requirement to

"find a formula ψ in CNF such that $\phi \models \bot \Leftrightarrow \psi \models \bot$ " we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea: A formula $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \leftrightarrow \phi)$ is satisfiable where P is a new propositional variable that does not occur in ψ and works as an abbreviation for ϕ .

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow \phi$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula into account.

For example if $\psi[\phi_1 \leftrightarrow \phi_2]_p$ and $pol(\psi, p) = -1$ then for CNF transformation do $\psi[(\phi_1 \land \phi_2) \lor (\neg \phi_1 \land \neg \phi_2)]_p$.

Optimized Transformations

Proposition 2.10:

Let P be a propositional variable not occurring in $\psi[\phi]_p$.

If $pol(\psi, p) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \to \phi)$ is satisfiable.

If $pol(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (\phi \to P)$ is satisfiable.

If $pol(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \leftrightarrow \phi)$ is satisfiable.

Proof:

Exercise.

Optimized Transformations

The number of eventually generated clauses is a good indicator for useful CNF transformations:

ψ	$ u(\psi)$	$ar{ u}(\psi)$
$\boxed{\phi_1 \wedge \phi_2}$	$ u(\phi_1) + \nu(\phi_2) $	$ar{ u}(\phi_1)ar{ u}(\phi_2)$
$\phi_1 \lor \phi_2$	$ u(\phi_1)\nu(\phi_2)$	$ar u(\phi_1) + ar u(\phi_2)$
$\phi_1 \to \phi_2$	$ar{ u}(\phi_1) u(\phi_2)$	$ u(\phi_1) + \bar{ u}(\phi_2) $
$\phi_1 \leftrightarrow \phi_2$	$\nu(\phi_1)\bar{\nu}(\phi_2) + \bar{\nu}(\phi_1)\nu(\phi_2)$	$\nu(\phi_1)\nu(\phi_2) + \bar{\nu}(\phi_1)\bar{\nu}(\phi_2)$
$\neg \phi_1$	$ar{ u}(\phi_1)$	$ u(\phi_1)$
P , \top , \bot	1	1

Step 1: Exhaustively apply modulo C of \leftrightarrow , AC of \land , \lor :

$$(\phi \land \top) \Rightarrow_{OCNF} \phi$$

$$(\phi \lor \bot) \Rightarrow_{OCNF} \phi$$

$$(\phi \leftrightarrow \bot) \Rightarrow_{OCNF} \neg \phi$$

$$(\phi \leftrightarrow \top) \Rightarrow_{OCNF} \phi$$

$$(\phi \lor \top) \Rightarrow_{OCNF} \top$$

$$(\phi \land \bot) \Rightarrow_{OCNF} \bot$$

$$(\phi \land \phi) \Rightarrow_{OCNF} \phi$$

$$(\phi \lor \phi) \Rightarrow_{OCNF} \phi$$

$$(\phi \land (\phi \lor \psi)) \Rightarrow_{OCNF} \phi$$

$$(\phi \lor (\phi \land \psi)) \Rightarrow_{OCNF} \phi$$

$$(\phi \land \neg \phi) \Rightarrow_{OCNF} \bot$$

$$(\phi \lor \neg \phi) \Rightarrow_{OCNF} \bot$$

$$\neg \bot \Rightarrow_{OCNF} \bot$$

$$\neg \bot \Rightarrow_{OCNF} \bot$$

$$(\phi \to \bot) \Rightarrow_{OCNF} \neg \phi$$
 $(\phi \to \top) \Rightarrow_{OCNF} \top$
 $(\bot \to \phi) \Rightarrow_{OCNF} \top$
 $(\top \to \phi) \Rightarrow_{OCNF} \phi$

Step 2: Introduce top-down fresh variables for beneficial subformulas:

$$\psi[\phi]_{p} \Rightarrow_{\mathsf{OCNF}} \psi[P]_{p} \land \mathsf{def}(\psi, p)$$

where P is new to $\psi[\phi]_p$, $\operatorname{def}(\psi, p)$ is defined polarity dependent according to Proposition 2.10 and $\nu(\psi[\phi]_p) > \nu(\psi[P]_p \wedge \operatorname{def}(\psi, p))$.

Remark: Although computing ν is not practical in general, the test $\nu(\psi[\phi]_p) > \nu(\psi[P]_p \wedge \text{def}(\psi, p))$ can be computed in constant time.

Step 3: Eliminate equivalences polarity dependent:

$$\psi[\phi \leftrightarrow \psi]_{p} \Rightarrow_{\mathsf{OCNF}} \psi[(\phi \to \psi) \land (\psi \to \phi)]_{p}$$

if $pol(\psi, p) = 1$ or $pol(\psi, p) = 0$

$$\psi[\phi \leftrightarrow \psi]_{p} \Rightarrow_{\mathsf{OCNF}} \psi[(\phi \land \psi) \lor (\neg \psi \land \neg \phi)]_{p}$$

if $pol(\psi, p) = -1$

Step 4: Apply steps 2, 3, 4, 5 of \Rightarrow_{ECNF}

Remark: The \Rightarrow_{OCNF} algorithm is already close to a state of the art algorithm. Missing are further redundancy tests and simplification mechanisms we will discuss later on in this section.