Substitution Theorem

Proposition 2.7:

Let ¢1 and ¢, be equivalent formulas, and ¥[¢1], be a formula
in which ¢1 occurs as a subformula at position p.

Then 9[p1], is equivalent to ¥[¢2],.

84

Equivalences

Proposition 2.8:
The following equivalences are valid for all formulas ¢, ¥, x:

(PN @) < @ ldempotency A

(¢ V P) < ¢ ldempotency V
(o NY) < (Y A D) Commutativity A
(¢ V) < (YV o) Commutativity V

(dNA (Y AX)) < (¢ AY)AX) Associativity A
(oV(YVx)) < ((¢VY)Vx) Associativity V
(N (Y VX)) (@AY)V(dAx) Distributivity AV
(pV(WAX)) < (pVY)A(pVx) Distributivity VA

85

Equivalences

(PN Q)< ¢
(pV @) < ¢
(PN (@VY)) < ¢
(PpV(pAY)) < ¢

Absorption A
Absorption V
Absorption AV
Absorption VA

(@ A=) < L
(pV—9) T

Introduction _L

Introduction T

86

Equivalences

(P V) < (g A)
(P AY) < (7o V)
=1 < 1
=l < T

De Morgan —V
De Morgan —A
Propagate = T
Propagate —_L

87

Equivalences

(PAT) < ¢
(pV L) o
(¢ =L)< o
(¢ L) <> ¢
(9 T)< o
(pVT)eT
(N L)+ L

Absorption TA
Absorption LV
Eliminate 1 —
Eliminate | <
Eliminate T <
Propagate T

Propagate L

88

Equivalences

(¢ = V) < (—o V) Eliminate —
(0 V) (¢ > Y)AN (Y — @) Eliminatel <
(¢ V) < (dAY)V (mp A=) Eliminate2 <

For simplification purposes the equivalences are typically applied

as left to right rules.

89

2.4 Normal Forms

We define conjunctions of formulas as follows:
Ao @i =T.
/\}:1 ¢i = P1.
/\7111 i = Nie1 @i A Pyt
and analogously disjunctions:
Vi ¢i= L.
\/}:1 ¢i = ¢1.
\/7211 i = Vie1 @i V dni1.

90

Literals and Clauses

A literal is either a propositional variable P or a negated

propositional variable —P.

A clause is a (possibly empty) disjunction of literals.

91

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal
form), if it is a conjunction of disjunctions of literals (or in other

words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a

disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

92

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of
DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and —P.

Conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary
literals P and —P.

On the other hand, checking the unsatisfiability of CNF formulas
or the validity of DNF formulas is known to be coNP-complete.

93

Conversion to CNF/DNF

Proposition 2.9:
For every formula there is an equivalent formula in CNF (and
also an equivalent formula in DNF).

Proof:
We consider the case of CNF and propose a naive algorithm.

Apply the following rules as long as possible (modulo associativity

and commutativity of A and V):

Step 1: Eliminate equivalences:

(¢ < V) =Eecnk (@ = V)A (Y — @)

94

Conversion to CNF/DNF

Step 2: Eliminate implications:
(¢ = v¥) =Ecne (M@ V)

Step 3: Push negations downward:

(o V) =ecnk (md A)
(P NY) =ecnk (4 V 1Y)

Step 4: Eliminate multiple negations:

¢ =ECNE @

95

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(@ AY)V X =EecnF (9VX)A (P V X)

Step 6: Eliminate T and _L:

= ECNF
= ECNF
= ECNF
= ECNF
= ECNF

—>ECNF

- 4 4 - ©

96

Conversion to CNF/DNF

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and
5 are a bit more complicated.

The resulting formula is equivalent to the original one and in
CNF.

The conversion of a formula to DNF works in the same way,

except that conjunctions have to be pushed downward in step 5.
[

97

Complexity

Conversion to CNF (or DNF) may produce a formula whose size

Is exponential in the size of the original one.

98

Satisfiability-preserving Transformations

The goal

“find a formula ¥ in CNF such that ¢ H ¥"

IS unpractical.

But if we relax the requirement to
“find a formula ¥ in CNF such that o = L. < ¢ = L

we can get an efficient transformation.

99

Satisfiability-preserving Transformations

Idea: A formula ¥|¢], is satisfiable if and only if Y)[P], A (P < ¢)
Is satisfiable where P is a new propositional variable that does
not occur in 1 and works as an abbreviation for ¢.

We can use this rule recursively for all subformulas in the original
formula (this introduces a linear number of new propositional

variables).

Conversion of the resulting formula to CNF increases the size
only by an additional factor (each formula P < ¢ gives rise to
at most one application of the distributivity law).

100

Optimized Transformations

A further improvement is possible by taking the polarity of the

subformula into account.

For example if 1[¢p1 <> ¢2], and pol(y), p) = —1 then for CNF
transformation do Y[(¢1 A ¢2) V (md1 A —2)]p.

101

Optimized Transformations

Proposition 2.10:
Let P be a propositional variable not occurring in ¥[¢],.

If pol(x, p) = 1, then Y[¢], is satisfiable if and only if
V[P], A (P — ¢) is satisfiable.

If pol(¢, p) = —1, then [¢], is satisfiable if and only if
V[P], A (¢ — P) is satisfiable.

If pol(x), p) = 0, then [¢], is satisfiable if and only if
Y[P], A (P < ¢) is satisfiable.
Proof:

Exercise.]

102

Optimized Transformations

The number of eventually generated clauses is a good indicator
for useful CNF transformations:

08 v(v) ()
d1 N\ $2 v(é1) + v(e2) v(¢1)v(¢2)
¢1V 92 v(¢1)v(¢2) v(¢1) + v(2)
P1 — P2 v(p1)v(¢2) v(¢1) + v(2)
O1 <> 2 | v(1)0(P2) + U(P1)v(@2) | v(d1)v(¢2) + D(91)0(e2)
01 (1) v(¢1)
P, 1,1 1 1

103

Optimized CNF

Step 1: Exhaustively apply modulo C of <, AC of A, V:

—OCNF
= OCNF
—OCNF
—OCNF
= OCNF

—OCNF

104

Optimized CNF

(@ A @) = ocNF
(V&) =ocNF

(¢ A (P VY)) =ocnF
(¢ V(¢ AY)) =ocnF
(& A =¢) =ocNF

(¢ V —¢) =o0cNF
=1 =0cCNF

— F 4 © & © ©

=1l =o0cNF

105

Optimized CNF

(¢ = L) =ocnF
(¢ = T) =ocnF
(L — ¢) =ocnF
(

T — ¢) =o0cNF

106

Optimized CNF

Step 2: Introduce top-down fresh variables for beneficial

subformulas:

V[¢lp =ocne Y[P]p A def(v), p)

where P is new to [¢|,, def(y, p) is defined polarity
dependent according to Proposition 2.10 and v(vy[¢],) >

v(Y[Plp A def(4), p)).

Remark: Although computing v is not practical in general,
the test v(v[p],) > v(¢¥[P], A def(), p)) can be computed in

constant time.

107

Optimized CNF

Step 3: Eliminate equivalences polarity dependent:

Y[g < Y]p =oene Y[(@ = V) A (Y — D)]p

if pol(¢, p) =1 or pol(¢), p) =0

V[< V], =oenke Y[(@AY)V (mY A —d)],

if pol(y, p) = —1

108

Optimized CNF

Step 4: Apply steps 2, 3, 4, 5 of =gcNF

Remark: The =gcnf algorithm is already close to a state of
the art algorithm. Missing are further redundancy tests and
simplification mechanisms we will discuss later on in this section.

109

