Confluence

Let (A, —) be a rewrite system.

b and c € A are joinable, if there is an a such that b —* a "+~ c.
Notation: b | c.

The relation — is called

Church-Rosser, if b <* ¢ implies b | c.

confluent, if b < a —* ¢ implies b | c.
locally confluent, if b < a — c implies b | c.

convergent, if it is confluent and terminating.
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Confluence

For a rewrite system (M, —) consider a sequence of elements
a; that are pairwise connected by the symmetric closure, i.e.,
a1 <> a <> az... <> a,. We say that a; is a peak in such a

sequence, if actually a;_1 < a; — aj11.
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Confluence

Theorem 1.11:
The following properties are equivalent:

(i) — has the Church-Rosser property.

(i) — is confluent.
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Confluence

Lemma 1.12:
If — is confluent, then every element has at most one normal

form.

Corollary 1.13:
If — is normalizing and confluent, then every element b
has a unique normal form.

Proposition 1.14:

If — is normalizing and confluent, then b <+* c if and only if

bl = cl.
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Confluence and Local Confluence

Theorem 1.15 ( “Newman's Lemma"):
If a terminating relation — is locally confluent, then it is

confluent.
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Part 2: Propositional Logic

Propositional logic

logic of truth values

decidable (but NP-complete)

can be used to describe functions over a finite domain
industry standard for many analysis/verification tasks

growing importance for discrete optimization problems
(Automated Reasoning II)
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2.1 Syntax

e propositional variables

e logical connectives

= Boolean connectives and constants
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Propositional Variables

Let 2 be a set of propositional variables also called the signature

of the (propositional) logic.

We use letters P, Q, R, S, to denote propositional variables.
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Propositional Formulas

PROP(X) is the set of propositional formulas over ¥ inductively
defined as follows:

o, = L (falsum)
T (verum)
P, PeX (atomic formula)
¢ (negation)
(@ A Y) (conjunction)
(& V) (disjunction)
(¢ — ) (implication)
(¢ < ) (equivalence)



Notational Conventions

As a notational convention we assume that — binds strongest,
so =P V Q is actually a shorthand for (—=P) Vv Q. For all
other logical connectives we will explicitly put parenthesis
when needed. From the semantics we will see that A and

\V are associative and commutative. Therefore instead of
((P A Q) A R) we simply write PA Q A R.

Automated reasoning is very much formula manipulation. In
order to precisely represent the manipulation of a formula, we

introduce positions.
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Formula Manipulation

A position is a word over N. The set of positions of a formula ¢

Is inductively defined by

pos(¢p) = et ifope{T,L}orpecl
pos(—¢) = {efU{lp|p € pos(¢)}
pos(¢ o v) {e}U{lp | p € pos(¢)} U{2p | p € pos(v)}

where o € {A,V, =, <}
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Formula Manipulation

The prefix order < on positions is defined by p < g if there is
some p’ such that pp’ = q.

Note that the prefix order is partial, e.g., the positions 12 and

21 are not comparable, they are “parallel”, see below.

By < we denote the strict part of <, i.e., p < g if p < g but
not ¢ < p. By || we denote incomparable positions, i.e., p || g
if neither p < g, nor g < p. Then we say that p is above g if
p < g, p is strictly above g if p < g, and p and g are parallel if

Pl a.
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Formula Manipulation

The size of a formula ¢ is given by the cardinality of pos(¢):
@] := | pos(9)].
The subformula of ¢ at position p € pos(¢) is recursively

defined by ¢|. := ¢ and (¢1 o ¢2)|ip = ®i|p, where i € {1, 2},
o€ {A\,V,—, &}
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Formula Manipulation

Finally, the replacement of a subformula at position p € pos(¢)
by a formula v is recursively defined by

olyle =
(=)[b]ip = —(2l¥]p)
(P10 @)Y = (d1][¢]p 0 ¢2)
(P10 @2)[]2p = (é10¢2[9]p)

where o € {A,V, =, <}
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Formula Manipulation

Example 2.1:

The set of positions for the formula ¢ = (AAB) — (AV B) is
pos(¢) = {€,1,11,12,2,21,22}. The subformula at position 22
is B, ¢|o» = B and replacing this formula by A <+ B results in
¢[A <> Bloo=(AAB) — (AV (A < B)).
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Formula Manipulation

A further prerequisite for efficient formula manipulation is the
polarity of a subformula ¢ of ¢. The polarity determines the
number of “negations” starting from ¢ down to 7). It is 1 for
an even number along the path, —1 for an odd number and 0O if

there is at least one equivalence connective along the path.
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Formula Manipulation

The polarity of a subformula 3 of ¢ at position p, i € {1,2} is
recursively defined by

pol(¢,e) = 1
pol(—¢, 1p) = —pol(¢, p)
pol(¢1 0 ¢2,ip) = pol(¢i, p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢2,p)
pol(¢1 — ¢2,2p) = pol(¢2, p)

pol(¢p1 <> ¢2,ip) = O



Formula Manipulation

Example 2.2:
We reuse the formula ¢ = (AA B) — (AV B) Then

pol(¢, 1) = pol(¢, 11) = —1 and pol(¢, 2) = pol(¢,22) = 1. For
the formula ¢’ = (AN B) < (AV B) we get pol(¢’,¢) =1 and
pol(¢’, p) = 0 for all other p € pos(¢’), p # .
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