Another important property for don't care non-deterministic rule based definitions of algorithms is confluence.

It means that whenever several sequences of rules are applicable to a given states, the respective results can be rejoined by further rule applications to a common problem state.

Confluence

Proposition 0.4 (Deduce and Conflict are Locally Confluent): Given a state $(N; D; \top)$ out of which two different states $(N; D_1; \top)$ and $(N; D_2; \bot)$ can be generated by Deduce and Conflict in one step, respectively, then the two states can be rejoined to a state (N; D'; *) via further rule applications. It works.

But: It looks like a lot of effort for a problem that one can solve with a little bit of thinking.

Reason: Our approach is very general, it can actually be used to "pontentially solve" *any* problem in computer science.

This difference is also important for automated reasoning:

- For problems that are well-known and frequently used, we can develop optimal specialized methods.
 ⇒ Algorithms & Data-structures
- For new/unknown/changing problems, we have to develop generic methods that do "something useful".
 ⇒ this lecture: Logic + Calculus + Implementation
- Combining the two approaches
 ⇒ Automated Reasoing II (next semester): Logic modulo
 Theory + Calculus + Implementation

Topics of the Course

Preliminaries

math repetition computer science repetition orderings induction (repetition) rewrite systems

Propositional logic

logic: syntax, semantics calculi: superposition, CDCL implementation: 2-watched literal, clause learning First-order predicate logic logic: syntax, semantics, model theory calculus: superposition implementation: sharing, indexing

First-order predicate logic with equality equational logic: unit equations calculus: term rewriting systems, Knuth-Bendix completion implementation: dependency pairs first-order logic with equality calculus: superposition implementation: rewriting Is a big problem, actually you are the "guinea-pigs" for a new textbook.

Franz Baader and Tobias Nipkow: *Term rewriting and all that*, Cambridge Univ. Press, 1998. (Textbook on equational reasoning)

Armin Biere and Marijn Heule and Hans van Maaren and Toby Walsh (editors): *Handbook of Satisfiability*, IOS Press, 2009. (Be careful: Handbook, hard to read)

Alan Robinson and Andrei Voronkov (editors): *Handbook of Automated Reasoning*, Vol I & II, Elsevier, 2001. (Be careful: Handbook, very hard to read)

Part 1: Preliminaries

- math repetition
- computer science repetition
- orderings
- induction (repetition)
- rewrite systems

1.1 Mathematical Prerequisites

 $\mathbb{N} = \{0, 1, 2, \ldots\}$ is the set of natural numbers

 \mathbb{N}^+ is the set of positive natural numbers without 0

 \mathbb{Z} , \mathbb{Q} , \mathbb{R} denote the integers, rational numbers and the real numbers, respectively.

Given a set M, a multi-set S over M is a mapping $S: M \to \mathbb{N}$, where S specifies the number of occurrences of elements m of the base set M within the multiset S.

We use the standard set notations \in , \subset , \subseteq , \cup , \cap with the analogous meaning for multisets, e.g., $(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$.

We also write multi-sets in a set like notation, e.g., the multi-set $S = \{1, 2, 2, 4\}$ denotes a multi-set over the set $\{1, 2, 3, 4\}$ where S(1) = 1, S(2) = 2, S(3) = 0, and S(4) = 1.

A multi-set S over a set M is finite if $\{m \in M \mid S(m) > 0\}$ is finite. In this lecture we only consider finite multi-sets.

An *n*-ary relation *R* over some set *M* is a subset of M^n : $R \subseteq M^n$. For two *n*-ary relations *R*, *Q* over some set *M*, their union (U) or intersection (\cap) is again an *n*-ary relation, where $R \cup Q := \{(m_1, \ldots, m_n) \in M \mid (m_1, \ldots, m_n) \in R \text{ or} (m_1, \ldots, m_n) \in Q\}$ $R \cap Q := \{(m_1, \ldots, m_n) \in M \mid (m_1, \ldots, m_n) \in R \text{ and} (m_1, \ldots, m_n) \in Q\}$.

A relation Q is a subrelation of a relation R if $Q \subseteq R$.

Relations

The characteristic function of a relation R or sometimes called predicate indicates membership. In addition of writing $(m_1, \ldots, m_n) \in R$ we also write $R(m_1, \ldots, m_n)$. So the predicate $R(m_1, \ldots, m_n)$ holds or is true if in fact (m_1, \ldots, m_n) belongs to the relation R. Given a nonempty alphabet Σ the set Σ^* of finite words over Σ is defined by

- (i) the empty word $\epsilon \in \Sigma^*$
- (ii) for each letter $a \in \Sigma$ also $a \in \Sigma^*$
- (iii) if $u, v \in \Sigma^*$ so $uv \in \Sigma^*$ where uv denotes the concatenation of u and v.

The length |u| of a word $u \in \Sigma^*$ is defined by

(i)
$$|\epsilon| := 0$$
,
(ii) $|a| := 1$ for any $a \in \Sigma$ and
(iii) $|uv| := |u| + |v|$ for any $u, v \in \Sigma^*$.