
4.4 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition 4.12 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting
problems for TMs to the termination problems for TRSs. 2

Consequence:

Decidable criteria for termination are not complete.

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules l →
r ∈ R, rather than at infinitely many possible replacement steps s→R s

′.

A binary relation ⊐ over TΣ(X) is called compatible with Σ-operations, if s ⊐ s′ implies
f(t1, . . . , s, . . . , tn) ⊐ f(t1, . . . , s

′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ TΣ(X).

Lemma 4.13 The relation ⊐ is compatible with Σ-operations, if and only if s ⊐ s′

implies t[s]p ⊐ t[s′]p for all s, s′, t ∈ TΣ(X) and p ∈ pos(t).

Note: compatible with Σ-operations = compatible with contexts.

A binary relation ⊐ over TΣ(X) is called stable under substitutions, if s ⊐ s′ implies
sσ ⊐ s′σ for all s, s′ ∈ TΣ(X) and substitutions σ.

A binary relation ⊐ is called a rewrite relation, if it is compatible with Σ-operations and
stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X) that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

101

Theorem 4.14 A TRS R terminates if and only if there exists a reduction ordering ≻
such that l ≻ r for every rule l → r ∈ R.

Proof. “if”: s →R s′ if and only if s = t[lσ]p, s
′ = t[rσ]p. If l ≻ r, then lσ ≻ rσ and

therefore t[lσ]p ≻ t[rσ]p. This implies →R ⊆ ≻. Since ≻ is a well-founded ordering, →R

is terminating.

“only if”: Define ≻ =→+
R. If →R is terminating, then ≻ is a reduction ordering. 2

Two Different Scenarios

Depending on the application, the TRS whose termination we want to show can be

(i) fixed and known in advance, or

(ii) evolving (e.g., generated by some saturation process).

Methods for case (ii) are also usable for case (i).
Many methods for case (i) are not usable for case (ii).

We will first consider case (ii);
additional techniques for case (i) will be considered later.

The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Define the ordering ≻A over TΣ(X) by s ≻A t iffA(β)(s) ≻ A(β)(t) for all assignments
β : X → UA.

Is ≻A a reduction ordering?

Lemma 4.15 ≻A is stable under substitutions.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all assignments β : X → UA. Let
σ be a substitution. We have to show that A(γ)(sσ) ≻ A(γ)(s′σ) for all assignments
γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma, A(γ)(sσ) = A(β)(s) ≻
A(β)(s′) = A(γ)(s′σ). Therefore sσ ≻A s′σ. 2

A function f : Un
A → UA is called monotone (with respect to ≻), if a ≻ a′ implies

f(b1, . . . , a, . . . , bn) ≻ f(b1, . . . , a
′, . . . , bn) for all a, a

′, bi ∈ UA.

102

Lemma 4.16 If the interpretation fA of every function symbol f is monotone w. r. t. ≻,
then ≻A is compatible with Σ-operations.

Proof. Let s ≻ s′, that is, A(β)(s) ≻ A(β)(s′) for all β : X → UA. Let β : X → UA be
an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))

≻ fA(A(β)(t1), . . . ,A(β)(s
′), . . . ,A(β)(tn))

= A(β)(f(t1, . . . , s
′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) ≻A f(t1, . . . , s
′, . . . , tn). 2

Theorem 4.17 If the interpretation fA of every function symbol f is monotone w. r. t.≻,
then ≻A is a reduction ordering.

Proof. By the previous two lemmas, ≻A is a rewrite relation. If there were an infinite
chain s1 ≻A s2 ≻A . . . , then it would correspond to an infinite chain A(β)(s1) ≻
A(β)(s2) ≻ . . . (with β chosen arbitrarily). Thus ≻A is well-founded. Irreflexivity and
transitivity are proved similarly. 2

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is N or some subset of N.

To every function symbol f with arity n we associate a polynomial Pf(X1, . . . , Xn) ∈
N[X1, . . . , Xn] with coefficients in N and indeterminates X1, . . . , Xn. Then we define
fA(a1, . . . , an) = Pf(a1, . . . , an) for ai ∈ UA.

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise, A would not be a Σ-
algebra.)

Requirement 2:

fA must be monotone (w. r. t. ≻).

103

From now on:

UA = {n ∈ N | n ≥ 1 }.

If arity(f) = 0, then Pf is a constant ≥ 1.

If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn), such that every Xi occurs
in some monomial with exponent at least 1 and non-zero coefficient.

⇒ Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to terms: A
term t containing the variables x1, . . . , xn yields a polynomial Pt with indeterminates
X1, . . . , Xn (where Xi corresponds to β(xi)).

Example:

Ω = {b/0, f/1, g/3}
Pb = 3, Pf (X1) = X2

1 , Pg(X1, X2, X3) = X1 +X2X3.

Let t = g(f(b), f(x), y), then Pt(X, Y) = 9 +X2Y .

If P,Q are polynomials in N[X1, . . . , Xn], we write P > Q if P (a1, . . . , an) > Q(a1, . . . , an)
for all a1, . . . , an ∈ UA.

Clearly, l ≻A r iff Pl > Pr iff Pl − Pr > 0.

Question: Can we check Pl − Pr > 0 automatically?

Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . , Xn] with integer coefficients, is P = 0 for some
n-tuple of natural numbers?

Theorem 4.18 Hilbert’s 10th Problem is undecidable.

Proposition 4.19 Given a polynomial interpretation and two terms l, r, it is undecid-
able whether Pl > Pr.

Proof. By reduction of Hilbert’s 10th Problem. 2

One easy case:

If we restrict to linear polynomials, deciding whether Pl − Pr > 0 is trivial:
∑
kiai + k > 0 for all a1, . . . , an ≥ 1 if and only if

ki ≥ 0 for all i ∈ {1, . . . , n},

and
∑
ki + k > 0

104

Another possible solution:

Test whether Pl(a1, . . . , an) > Pr(a1, . . . , an) for all a1, . . . , an ∈ { x ∈ R | x ≥ 1 }.

This is decidable (but hard). Since UA ⊆ { x ∈ R | x ≥ 1 }, it implies Pl > Pr.

Alternatively:

Use fast overapproximations.

Simplification Orderings

The proper subterm ordering ⊲ is defined by s ⊲ t if and only if s|p = t for some position
p 6= ε of s.

A rewrite ordering ≻ over TΣ(X) is called simplification ordering, if it has the subterm
property: s ⊲ t implies s ≻ t for all s, t ∈ TΣ(X).

Example:

Let Remb be the rewrite system Remb = { f(x1, . . . , xn) → xi | f ∈ Ω, 1 ≤ i ≤ n =
arity(f) }.

Define ⊲emb =→+
Remb

and Demb =→∗
Remb

(“homeomorphic embedding relation”).

⊲emb is a simplification ordering.

Lemma 4.20 If ≻ is a simplification ordering, then s ⊲emb t implies s ≻ t and s Demb t
implies s � t.

Proof. Since ≻ is transitive and � is transitive and reflexive, it suffices to show that
s →Remb

t implies s ≻ t. By definition, s →Remb
t if and only if s = s[lσ] and t = s[rσ]

for some rule l → r ∈ Remb. Obviously, l ⊲ r for all rules in Remb, hence l ≻ r. Since ≻
is a rewrite relation, s = s[lσ] ≻ s[rσ] = t. 2

Goal:

Show that every simplification ordering is well-founded (and therefore a reduction
ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification orderings and the
definition of embedding have to be modified.

105

Theorem 4.21 (“Kruskal’s Theorem”) Let Σ be a finite signature, let X be a finite
set of variables. Then for every infinite sequence t1, t2, t3, . . . there are indices j > i such
that tj Demb ti. (Demb is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, page 113–115. 2

Theorem 4.22 (Dershowitz) If Σ is a finite signature, then every simplification or-
dering ≻ on TΣ(X) is well-founded (and therefore a reduction ordering).

Proof. Suppose that t1 ≻ t2 ≻ t3 ≻ . . . is an infinite descending chain.

First assume that there is an x ∈ vars(ti+1) \ vars(ti). Let σ = {x 7→ ti}, then ti+1σ D

xσ = ti and therefore ti = tiσ ≻ ti+1σ � ti, contradicting reflexivity.

Consequently, vars(ti) ⊇ vars(ti+1) and ti ∈ TΣ(V) for all i, where V is the finite
set vars(t1). By Kruskal’s Theorem, there are i < j with ti Eemb tj . Hence ti � tj,
contradicting ti ≻ tj. 2

There are reduction orderings that are not simplification orderings and terminating TRSs
that are not contained in any simplification ordering.

Example:

Let R = {f(f(x))→ f(g(f(x)))}.

R terminates and →+
R is therefore a reduction ordering.

Assume that →R were contained in a simplification ordering ≻. Then f(f(x)) →R

f(g(f(x))) implies f(f(x)) ≻ f(g(f(x))), and f(g(f(x))) Demb f(f(x)) implies f(g(f(x))) �
f(f(x)), hence f(f(x)) ≻ f(f(x)).

Path Orderings

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω.

The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t
iff

(1) t ∈ vars(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

106

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

Lemma 4.23 s ≻lpo t implies vars(s) ⊇ vars(t).

Proof. By induction on |s|+ |t| and case analysis. 2

Theorem 4.24 ≻lpo is a simplification ordering on TΣ(X).

Proof. Show transitivity, subterm property, stability under substitutions, compatibility
with Σ-operations, and irreflexivity, usually by induction on the sum of the term sizes
and case analysis. Details: Baader and Nipkow, page 119/120. 2

Theorem 4.25 If the precedence ≻ is total, then the lexicographic path ordering ≻lpo

is total on ground terms, i. e., for all s, t ∈ TΣ(∅): s ≻lpo t ∨ t ≻lpo s ∨ s = t.

Proof. By induction on |s|+ |t| and case analysis. 2

Recapitulation:

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”) on
Ω. The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t
iff

(1) t ∈ vars(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

There are several possibilities to compare subterms in (2)(c):

• compare list of subterms lexicographically left-to-right (“lexicographic path order-
ing (lpo)”, Kamin and Lévy)

• compare list of subterms lexicographically right-to-left (or according to some per-
mutation π)

• compare multiset of subterms using the multiset extension (“multiset path ordering
(mpo)”, Dershowitz)

• to each function symbol f with arity(n) ≥ 1 associate a status ∈ {mul} ∪ { lexπ |
π : {1, . . . , n} → {1, . . . , n} } and compare according to that status (“recursive
path ordering (rpo) with status”)

107

The Knuth-Bendix Ordering

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω, let w : Ω ∪ X → R+

0 be a weight function, such that the following admissibility
conditions are satisfied:

w(x) = w0 ∈ R+ for all variables x ∈ X ; w(c) ≥ w0 for all constants c ∈ Ω.

If w(f) = 0 for some f ∈ Ω with arity(f) = 1, then f � g for all g ∈ Ω.

The weight function w can be extended to terms as follows:

w(t) =
∑

x∈vars(t)

w(x) ·#(x, t) +
∑

f∈Ω

w(f) ·#(f, t).

The Knuth-Bendix ordering ≻kbo on TΣ(X) induced by ≻ and w is defined by: s ≻kbo t
iff

(1) #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

(2) #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) t = x, s = fn(x) for some n ≥ 1, or

(b) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g, or

(c) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm) (≻kbo)lex (t1, . . . , tm).

Theorem 4.26 The Knuth-Bendix ordering induced by ≻ and w is a simplification
ordering on TΣ(X).

Proof. Baader and Nipkow, pages 125–129. 2

Remark

If Π 6= ∅, then all the term orderings described in this section can also be used to compare
non-equational atoms by treating predicate symbols like function symbols.

Defining a weight w(f) = 0 for some unary function symbol f was in particular intro-
duced for the application of KBO to equational systems defining groups.

108

4.5 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of
rewrite rules.
(If R is finite: decision procedure for E.)

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way that →R ⊆ ≻ (i. e., l ≻ r
for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is itself presented as a set of rewrite rules working on a pair
of equations E and rules R: (E0;R0)⇒ (E1;R1)⇒ (E2;R2)⇒ . . .

At the beginning, E = E0 is the input set and R = R0 is empty. At the end, E should
be empty; then R is the result.

For each step (E;R) ⇒ (E ′;R′), the equational theories of E ∪ R and E ′ ∪ R′ agree:
≈E∪R = ≈E′∪R′ .

Notations:

The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.

Orient
(E ⊎ {s

.
≈ t};R) ⇒KBC (E;R ∪ {s→ t})

if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i. e., neither s ≻ t nor t ≻ s.

Trivial equations cannot be oriented – but we don’t need them anyway:

Delete
(E ⊎ {s ≈ s};R) ⇒KBC (E;R)

109

Critical pairs between rules in R are turned into additional equations:

Deduce
(E;R) ⇒KBC (E ∪ {s ≈ t};R)

if 〈s, t〉 ∈ CP(R)

Note: If 〈s, t〉 ∈ CP(R) then s R← u→R t and hence R |= s ≈ t.

The following inference rules are not absolutely necessary, but very useful (e. g., to get
rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq
(E ⊎ {s

.
≈ t};R) ⇒KBC (E ∪ {u ≈ t};R)

if s→R u

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule
(E;R ⊎ {s→ t}) ⇒KBC (E;R ∪ {s→ u})

if t→R u

Simplification of the left-hand side may influence orientability and orientation. There-
fore, it yields an equation:

L-Simplify-Rule
(E;R ⊎ {s→ t}) ⇒KBC (E ∪ {u ≈ t};R

if s→R u using a rule l → r ∈ R such that s ⊐ l (see next slide).

For technical reasons, the lhs of s → t may only be simplified using a rule l → r, if
l → r cannot be simplified using s → t, that is, if s ⊐ l, where the encompassment
quasi-ordering ⊐

∼ is defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.27 ⊐ is a well-founded strict partial ordering.

Lemma 4.28 If E,R ⊢ E ′, R′, then ≈E∪R = ≈E′∪R′ .

Lemma 4.29 If E,R ⊢ E ′, R′ and →R ⊆ ≻, then →R′ ⊆ ≻.

110

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can hap-
pen:

(1) We reach a state where no more inference rules are applicable and E is not empty.
⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs between the rules in the
current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) (E0;R0) ⇒KBC (E1;R1) ⇒KBC (E2;R2) ⇒KBC . . . with
R0 = ∅ is called a run of the completion procedure with input E0 and ≻.

For a run, E∞ =
⋃

i≥0Ei and R∞ =
⋃

i≥0Ri.

The sets of persistent equations or rules of the run are E∗ =
⋃

i≥0

⋂
j≥iEj and R∗ =⋃

i≥0

⋂
j≥iRj .

Note: If the run is finite and ends with En, Rn, then E∗ = En and R∗ = Rn.

A run is called fair, if CP (R∗) ⊆ E∞ (i. e., if every critical pair between persisting rules
is computed at some step of the derivation).

Goal:

Show: If a run is fair and E∗ is empty, then R∗ is convergent and equivalent to E0.

In particular: If a run is fair and E∗ is empty, then ≈E0
= ≈E∞∪R∞

=↔∗
E∞∪R∞

= ↓R∗
.

General assumptions from now on:

(E0;R0)⇒KBC (E1;R1)⇒KBC (E2;R2)⇒KBC . . .
is a fair run.

R0 and E∗ are empty.

111

