
2.6 The CDCL Procedure

Goal:
Given a propositional formula in CNF (or alternatively, a finite set N of clauses), check
whether it is satisfiable (and optionally: output one solution, if it is satisfiable).

Assumption:
Clauses contain neither duplicated literals nor complementary literals.

CDCL: Conflict Driven Clause Learning

Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N .

A |= C if and only if A |= L for some literal L ∈ C.

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider partial valuations
(that is, partial mappings A : Σ→ {0, 1}).

Every partial valuation A corresponds to a set M of literals that does not contain
complementary literals, and vice versa:

A(L) is true, if L ∈M .

A(L) is false, if L ∈M .

A(L) is undefined, if neither L ∈M nor L ∈ M .

We will use A and M interchangeably. Note that truth of a literal with respect to M is
defined differently than for NI .

A clause is true under a partial valuation A (or under a set M of literals) if one of
its literals is true; it is false (or “conflicting”) if all its literals are false; otherwise it is
undefined (or “unresolved”).

37

Unit Clauses

Observation:
Let A be a partial valuation. If the set N contains a clause C, such that all literals but
one in C are false under A, then the following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and makes the remaining
literal L of C true.

C is called a unit clause; L is called a unit literal.

Pure Literals

One more observation:
Let A be a partial valuation and P a variable that is undefined under A. If P occurs
only positively (or only negatively) in the unresolved clauses in N , then the following
properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and assigns 1 (0) to P .

P is called a pure literal.

The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(literal set M , clause set N) {
if (all clauses in N are true under M) return true;
elsif (some clause in N is false under M) return false;
elsif (N contains unit clause P) return DPLL(M ∪ {P}, N);
elsif (N contains unit clause ¬P) return DPLL(M ∪ {¬P}, N);
elsif (N contains pure literal P) return DPLL(M ∪ {P}, N);
elsif (N contains pure literal ¬P) return DPLL(M ∪ {¬P}, N);
else {

let P be some undefined variable in N ;
if (DPLL(M ∪ {¬P}, N)) return true;
else return DPLL(M ∪ {P}, N);

}

}

Initially, DPLL is called with an empty literal set and the clause set N .

38

2.7 From DPLL to CDCL

In practice, there are several changes to the procedure:

The pure literal check is only done while preprocessing (otherwise is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;
the backtrack stack is managed explicitly
(it may be possible and useful to backtrack more than one level).

CDCL = DPLL + Information is reused by learning + Restart + Specific Data Struc-
tures

Branching Heuristics

Choosing the right undefined variable to branch is important for efficiency, but the
branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be recomputed too frequently.

In general: choose variables that occur frequently, prefer variables from recent con-
flicts.

The Deduction Algorithm

For applying the unit rule, we need to know the number of literals in a clause that are
not false.

Maintaining this number is expensive, however.

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched” literals.

For each variable P , keep a list of all clauses in which P is watched and a list of all
clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses in which P (or ¬P) is
watched and watch another literal (that is true or undefined) in this clause if possible.

Watched literal information need not be restored upon backtracking.

39

Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further branches.

Method: Learning:

If a conflicting clause is found, derive a new clause from the conflict and add it to the
current set of clauses.

Problem: This may produce a large number of new clauses; therefore it may become
necessary to delete some of them afterwards to save space.

Backjumping

Related technique:
non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip over that backtrack
level.

Restart

Runtimes of DPLL-style procedures depend extremely on the choice of branching vari-
ables.

If no solution is found within a certain time limit, it can be useful to restart from scratch
with an adopted variable selection heuristics, but learned clauses are kept.

In particular, after learning a unit clause a restart is done.

Formalizing DPLL with Refinements

The DPLL procedure is modelled by a transition relation ⇒DPLL on a set of states.

States:

• fail

• (M ;N)

where M is a list of annotated literals and N is a set of clauses. We use + to right add
a literal or a list of literals to M

Annotated literal:

• L: deduced literal, due to unit propagation.

• Ld: decision literal (guessed literal).

40

Unit Propagate:

(M ;N ∪ {C ∨ L}) ⇒DPLL (M + L;N ∪ {C ∨ L})

if C is false under M and L is undefined under M .

Decide:

(M ;N) ⇒DPLL (M + Ld;N)

if L is undefined under M and contained in N .

Fail:

(M ;N ∪ {C}) ⇒DPLL fail

if C is false under M and M contains no decision literals.

Backjump:

(M ′ + Ld +M ′′;N) ⇒DPLL (M ′ + L′;N)

if there is some “backjump clause” C ∨ L′ such that
N |= C ∨ L′,
C is false under M ′, and
L′ is undefined under M ′.

We will see later that the Backjump rule is always applicable, if the list of literals M
contains at least one decision literal and some clause in N is false under M .

There are many possible backjump clauses. One candidate: L1 ∨ . . . ∨ Ln, where the Li

are all the decision literals in M + Ld +M ′. (But usually there are better choices.)

Lemma 2.16 If we reach a state (M ;N) starting from (nil;N), then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from N and decision literals occurring before
L in M .

Proof. By induction on the length of the derivation. 2

Lemma 2.17 Every derivation starting from (nil;N) terminates.

Proof. (Idea) Consider a DPLL derivation step (M ;N) ⇒DPLL (M ′;N ′) and a de-
composition M0 + Ld

1 +M1 + . . . + Ld
k +Mk of M (accordingly for M ′). Let n be the

number of distinct propositional variables in N . Then k, k′ and the length of M , M ′

are always smaller or equal to n. We define f(M) = n− length(M) and finally

(M ;N) ≻ (M ′;N ′) if

41

(i) f(M0) = f(M ′
0), . . . , f(Mi−1) = f(M ′

i−1), f(Mi) > f(M ′
i) for some i < k, k′ or

(ii) f(Mj) = f(M ′
j) for all 1 ≤ j ≤ k and f(M) > f(M ′).

Lemma 2.18 Suppose that we reach a state (M ;N) starting from (nil;N) such that
some clause D ∈ N is false under M . Then:

(1) If M does not contain any decision literal, then “Fail” is applicable.

(2) Otherwise, “Backjump” is applicable.

Proof. (1) Obvious.

(2) Let L1, . . . , Ln be the decision literals occurring in M (in this order). Since M |=
¬D, we obtain, by Lemma 2.16, N ∪ {L1, . . . , Ln} |= ¬D. Since D ∈ N , this is a
contradiction, so N ∪ {L1, . . . , Ln} is unsatisfiable. Consequently, N |= L1 ∨ · · · ∨ Ln.
Now let C = L1 ∨ · · · ∨ Ln−1, L

′ = Ln, L = Ln, and let M ′ be the list of all literals of
M occurring before Ln, then the condition of “Backjump” is satisfied. 2

Theorem 2.19 (1) If we reach a final state (M ;N) starting from (nil;N), then N is
satisfiable and M is a model of N .

(2) If we reach a final state fail starting from (nil;N), then N is unsatisfiable.

Proof. (1) Observe that the “Decide” rule is applicable as long as literals are undefined
under M . Hence, in a final state, all literals must be defined. Furthermore, in a final
state, no clause in N can be false under M , otherwise “Fail” or “Backjump” would be
applicable. Hence M is a model of every clause in N .

(2) If we reach fail , then in the previous step we must have reached a state (M ;N) such
that some C ∈ N is false under M and M contains no decision literals. By part (2) of
Lemma 2.16, every literal in M follows from N . On the other hand, C ∈ N , so N must
be unsatisfiable. 2

Getting Better Backjump Clauses

Suppose that we have reached a stateM ‖ N such that some clause C ∈ N (or following
from N) is false under M .

Consequently, every literal of C is the complement of some literal in M .

(1) If every literal in C is the complement of a decision literal ofM , then C is a backjump
clause.

42

