
Step 4: Apply steps 2, 3, 4, 5 of ⇒ECNF

Remark: The ⇒OCNF algorithm is already close to a state of the art algorithm. Missing
are further redundancy tests and simplification mechanisms we will discuss later on in
this section.

2.5 Superposition for PROP(Σ)

Superposition for PROP(Σ) is:

• resolution (Robinson 1965) +

• ordering restrictions (Bachmair & Ganzinger 1990) +

• abstract redundancy critrion (B&G 1990) +

• partial model construction (B & G 1990) +

• partial-model based inference restriction (Weidenbach)

Resolution for PROP(Σ)

A calculus is a set of inference and reduction rules for a given logic (here PROP(Σ)).

We only consider calculi operating on a set of clauses N . Inference rules add new clauses
to N whereas reduction rules remove clauses from N or replace clauses by “simpler”
ones.

We are only interested in unsatisfiability, i.e., the considered calculi test whether a
clause set N is unsatisfiable. So, in order to check validity of a formula φ we check
unsatisfiability of the clauses generated from ¬φ.

For clauses we switch between the notation as a disjunction, e.g., P ∨Q ∨ P ∨ ¬R, and
the notation as a multiset, e.g., {P,Q, P,¬R}. This makes no difference as we consider
∨ in the context of clauses always modulo AC. Note that ⊥, the empty disjunction,
corresponds to ∅, the empty multiset.

For literals we write L, possibly with subscript.. If L = P then L̄ = ¬P and if L = ¬P
then L̄ = P , so the bar flips the negation of a literal.

Clauses are typically denoted by letters C, D, possibly with subscript.

The resolution calculus consists of the inference rules resolution and factoring :

Resolution Factoring

I
C1 ∨ P C2 ∨ ¬P

C1 ∨ C2
I

C ∨ L ∨ L
C ∨ L

30



where C1, C2, C always stand for clauses, all inference/reduction rules are applied with
respect to AC of ∨. Given a clause set N the schema above the inference bar is mapped
to N and the resulting clauses below the bar are then added to N .

and the reduction rules subsumption and tautology deletion:

Subsumption Tautology Deletion

R
C1 C2

C1
R

C ∨ P ∨ ¬P

where for subsumption we assume C1 ⊆ C2. Given a clause set N the schema above
the reduction bar is mapped to N and the resulting clauses below the bar replace the
clauses above the bar in N .

Clauses that can be removed are called redundant.

So, if we consider clause sets N as states, ⊎ is disjoint union, we get the rules

Resolution (N ⊎ {C1 ∨ P,C2 ∨ ¬P}) ⇒ (N ∪ {C1 ∨ P,C2 ∨ ¬P} ∪ {C1 ∨
C2})

Factoring (N ⊎ {C ∨ L ∨ L}) ⇒ (N ∪ {C ∨ L ∨ L} ∪ {C ∨ L})

Subsumption (N ⊎ {C1, C2}) ⇒ (N ∪ {C1})

provided C1 ⊆ C2

Tautology
Deletion

(N ⊎ {C ∨ P ∨ ¬P}) ⇒ (N)

We need more structure than just (N) in order to define a useful rewrite system. We fix
this later on.

Theorem 2.11 The resolution calculus is sound and complete:
N is unsatisfiable iff N ⇒∗ {⊥}

Proof. Will be a consequence of soundness and completeness of superposition. 2

31



Ordering restrictions

Let ≺ be a total ordering on Σ.

We lift ≺ to a total ordering on literals by ≺⊆≺L and P ≺L ¬P and ¬P ≺L Q for all
P ≺ Q.

We further lift ≺L to a total ordering on clauses ≺C by considering the multiset extension
of ≺L for clauses.

Eventually, we overload ≺ with ≺L and ≺C .

We define N≺C = {D ∈ N | D ≺ C}.

Eventually we will restrict inferences to maximal literals with respect to ≺.

Abstract Redundancy

A clause C is redundant with respect to a clause set N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if ⊆ is strict.

Remark: Note that for finite N , N≺C |= C can be decided for PROP(Σ) but is as hard
as testing unsatisfiability for a clause set N .

Partial Model Construction

Given a clause set N and an ordering ≺ we can construct a (partial) model NI for N
as follows:

NC :=
⋃

D≺C δD

δD :=

{
{P} if D = D′ ∨ P and P maximal and ND 6|= D
∅ otherwise

NI :=
⋃

C∈N δC

32



Superposition

The superposition calculus consists of the inference rules superposition left and factor-
ing :

Superposition
Left

(N ⊎ {C1 ∨ P,C2 ∨ ¬P}) ⇒ (N ∪ {C1 ∨ P,C2 ∨ ¬P} ∪ {C1 ∨

C2})

where P is strictly maximal in C1 ∨ P and ¬P is maximal in C2 ∨ ¬P

Factoring (N ⊎ {C ∨ P ∨ P}) ⇒ (N ∪ {C ∨ P ∨ P} ∪ {C ∨ P})

where P is maximal in C ∨ P ∨ P

examples for specific redundancy rules are

Subsumption (N ⊎ {C1, C2}) ⇒ (N ∪ {C1})

provided C1 ⊂ C2

Tautology
Deletion

(N ⊎ {C ∨ P ∨ ¬P}) ⇒ (N)

Subsumption
Resolu-
tion

(N ⊎ {C1 ∨ L,C2 ∨ L̄}) ⇒ (N ∪ {C1 ∨ L,C2})

where C1 ⊆ C2

Theorem 2.12 If from a clause set N all possible superposition inferences are redun-
dant and ⊥ /∈ N then N is satisfiable and NI |= N .

33


