Substitution Theorem

Proposition 2.7 Let ¢; and ¢ be equivalent formulas, and 1[¢;], be a formula in
which ¢, occurs as a subformula at position p.

Then ¢[¢1], is equivalent to [ps],.

Proof. The proof proceeds by induction over the formula structure of ).

Each of the formulas 1, T, and P for P € ¥ contains only one subformula, namely
itself. Hence, if ¢ = ¢[¢q]. equals L, T, or P, then ¢¥[¢1]. = @1, ¥[da]c = ¢o, and we are
done by assumption.

If 1 = 1b1 A 1)q, then either p = € (this case is treated as above), or ¢; is a subformula
of 11 or 1y at position 1p’ or 2p’, respectively. Without loss of generality, assume that
¢1 is a subformula of ¥y, so ¥ = ¥1[¢1], A 1he. By the induction hypothesis, 11[¢1],
and 1 [¢s],, are equivalent. Hence, for any valuation A, A(Y[p1]1y) = A(i[d1]y A
) = min({AW1[¢1]p), A(¢2)}) = min({AW1[2]y), A(v2)}) = A(ila]p A ¢2)

A(¢[p2]1,7). The other boolean connectives are handled analogously. O

Equivalences

Proposition 2.8 The following equivalences are valid for all formulas ¢, v, x:

(PN D)< ¢ Idempotency A
(pV @) <> ¢ Idempotency V
(PNAY) < (VA D) Commutativity A
(pV ) < (Y Vo) Commutativity V
(N (W AX)) < (pAY)AX)  Associativity N
(pV (VX)) < ((6VY)VX) Associativity V
(PN (VX)) < (@ANY)V (6 Ax) Distributivity AV
(pV(WAX)) < (6VY)A(pV x) Distributivity VA
(PN D)< ¢ Absorption A
(V@) < ¢ Absorption V
(@A (pV 1)) < ¢ Absorption AV
(¢V (pANY)) < ¢ Absorption VA
(¢ N—¢) <> L  Introduction L
(¢pV —¢) <> T  Introduction T
—(p V) < (mp A —p) De Morgan —V
—(pANY) < (7 V —p) De Morgan —A
T & L Propagate =T
LT Propagate =L
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(AT)<> ¢  Absorption TA
(pV L)« ¢  Absorption LV
(¢p - L) <> =¢ Eliminate L —
(¢ <> L) <> =¢ Eliminate L <
(p <> T)<> ¢ Eliminate T <
(pVT)«+ T  Propagate T
(0N L)+ L Propagate L

(¢ =) < (= V) Eliminate —
(0 1Y) < (0= Y)A (Y — ¢) Eliminatel <
(p <> 1Y) < (pNY)V (¢ A1) Eliminate2 «»

For simplification purposes the equivalences are typically applied as left to right rules.

2.4 Normal Forms

We define conjunctions of formulas as follows:
/\?:1 sz =T.
Niei 6= 01
n+1 o n )
Nizi @i = Nizy i A b
and analogously disjunctions:
V?:1 Cbz =1
Vioi ¢ = é1.
Vit ¢i = Vs iV dnsa-

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable —P.

A clause is a (possibly empty) disjunction of literals.
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CNF and DNF
A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction
of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of
literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of
complementary literals P and —P.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions
contains a pair of complementary literals P and —P.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF
formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 2.9 For every formula there is an equivalent formula in CNF' (and also an
equivalent formula in DNF).

Proof. We consider the case of CNF and propose a naive algorithm.

Apply the following rules as long as possible (modulo associativity and commutativity
of A and V):

Step 1: Eliminate equivalences:

(¢ V) =rene (0= V)N (W — )

Step 2: Eliminate implications:

(¢ = ¢) =rcnr (7 V1Y)
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Step 3: Push negations downward:

“(@VY) =pene (79 A )
(¢ ANY) =pene (O V 1)

Step 4: Eliminate multiple negations:

——¢ =gcNE @

Step 5: Push disjunctions downward:
(@AY)V X =Eexk (VX)A([WVX)

Step 6: Eliminate T and _L:

( ) =ECNF
(¢ A L) =pene
( ) =ECNF
( ) =ECNF
-l =gcNF

- 4 A4S

=T =EcNF

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and 5 are a bit more
complicated.

For step 1, we can prove termination in the following way: We define a function p
from formulas to positive integers such that pu(L) = u(T) = uw(P) = 1, u(—¢) = u(e),
@ AY) = o V) = p(d = v) = u(@) + u(v), and u(¢ < ) = 2u(¢) + 2u(¥) + 1.
Observe that p is constructed in such a way that u(¢y) > u(¢e) implies p(¢[é1],) >
w(¥[pa],) for all formulas ¢, ¢o, and ¥ and positions p. Using this property, we can
show that whenever a formula x’ is the result of applying the rule of step 1 to a formula Yy,
then p(x) > p(x’'). Since u takes only positive integer values, step 1 must terminate.

Termination of steps 3 and 5 is proved similarly. For step 3, we use a function u from
formulas to positive integers such that p(Ll) = u(T) = u(P) = 1, p(—¢) = 2u(p),

W& A ) = 16V ) = (6 — ¥) = ju(d > ¥) = u(@) + p(®) + 1. Whenever a formula
X’ is the result of applying a rule of step 3 to a formula y, then u(x) > u(x’). Since p
takes only positive integer values, step 3 must terminate.

For step 5, we use a function p from formulas to positive integers such that p(Ll) =

p(T) = pP) =1, p(=¢) = p(d) + 1, plo Av) = p(d = ¥) = p(d < ¥) = u(d) +
ww) + 1, and p(o V) = 2u(p)u(v). Again, if a formula x’ is the result of applying
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a rule of step 5 to a formula x, then u(x) > u(x’). Since p takes only positive integer
values, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions
have to be pushed downward in step 5. O

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the
size of the original one.

Satisfiability-preserving Transformations

The goal
“find a formula ¢ in CNF such that ¢ H 9"
is unpractical.
But if we relax the requirement to
“find a formula ¢ in CNF such that ¢ = 1L < ¢ = L7

we can get an efficient transformation.

Idea: A formula v[¢], is satisfiable if and only if ¥[P], A (P <> ¢) is satisfiable where P
is a new propositional variable that does not occur in ¢ and works as an abbreviation

for ¢.

We can use this rule recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional
factor (each formula P <> ¢ gives rise to at most one application of the distributivity
law).

27



Optimized Transformations

A further improvement is possible by taking the polarity of the subformula into ac-
count.

For example if ¢[¢; <> @2, and pol(¢, p) = —1 then for CNF transformation do ¢[(¢1 A

$2) V (21 A =),

Proposition 2.10 Let P be a propositional variable not occurring in ¥[¢],.
If pol(¢, p) = 1, then ¢[¢], is satisfiable if and only if [P], A (P — ¢) is satisfiable.
If pol(¢, p) = —1, then ¢[¢], is satisfiable if and only if 1[P], A (¢ — P) is satisfiable.

If pol(vp, p) = 0, then [¢], is satisfiable if and only if Y[P], A (P <> ¢) Is satisfiable.
O

Proof. Exercise.

The number of eventually generated clauses is a good indicator for useful CNF trans-
formations:

v ] v(y) | v(¥) |
D1 A Py v(¢1) + v(92) v(¢1)7(¢2)
¢1V o v(¢1)v(g2) v(d1) + v(d2)
b1 — o v(¢1)v(92) V(1) + v(d2)
P1 > Oo | V(01)0(P2) + D(P1)v(pa) | v(P1)v () + D(d1)D(h2)
-1 v(¢1) (1)
PT, L 1 1

Optimized CNF

Step 1: Exhaustively apply modulo C of <+, AC of A, V:

(¢ AT) =ocnr
(¢V L) =ocnr
(¢ <> L) =ocxF
(¢« T) =ocnr
(¢VT) =ocnr
(¢ A L) =ocxk

¢
¢

—¢

¢
.

L
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(eNo
(oV o

(PN (dVY)
(@ V(6 AD)
(9N =9
(V-9

=T =o0cNF

=OCNF
= OCNF
= OCNF
=>OCNF
= OCNF

~— — — N ~— ~—

= OCNF

Ak dAFSe S

-1 =ocnF

( ) =>ocNr @
( ) =o0CNF
(L —¢) =ocxr
( )

> o

= OCNF

Step 2: Introduce top-down fresh variables for beneficial subformulas:

Y[¢l, =ocne V[P Adef(y, p)

where P is new to ¢[¢],, def(¢, p) is defined polarity dependent according to Proposi-
tion 2.10 and v(¢[¢],) > v(¢[P], A def(z), p)).

Remark: Although computing v is not practical in general, the test v([¢],) > v(¢[P], A
def(1), p)) can be computed in constant time.

Step 3: Eliminate equivalences polarity dependent:

Ylg < Yl =oene Y@= Y)A (Y — @)y

if pol(¢, p) = 1 or pol(y,p) = 0

V(g < Y], =oonk Y[(@AY)V (= A=),
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Step 4: Apply steps 2, 3, 4, 5 of =gcnr

Remark: The =ocnr algorithm is already close to a state of the art algorithm. Missing
are further redundancy tests and simplification mechanisms we will discuss later on in
this section.
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