
Substitution Theorem

Proposition 2.7 Let φ1 and φ2 be equivalent formulas, and ψ[φ1]p be a formula in
which φ1 occurs as a subformula at position p.

Then ψ[φ1]p is equivalent to ψ[φ2]p.

Proof. The proof proceeds by induction over the formula structure of ψ.

Each of the formulas ⊥, ⊤, and P for P ∈ Σ contains only one subformula, namely
itself. Hence, if ψ = ψ[φ1]ǫ equals ⊥, ⊤, or P , then ψ[φ1]ǫ = φ1, ψ[φ2]ǫ = φ2, and we are
done by assumption.

If ψ = ψ1 ∧ ψ2, then either p = ǫ (this case is treated as above), or φ1 is a subformula
of ψ1 or ψ2 at position 1p′ or 2p′, respectively. Without loss of generality, assume that
φ1 is a subformula of ψ1, so ψ = ψ1[φ1]p′ ∧ ψ2. By the induction hypothesis, ψ1[φ1]p′
and ψ1[φ2]p′ are equivalent. Hence, for any valuation A, A(ψ[φ1]1p′) = A(ψ1[φ1]p′ ∧
ψ2) = min({A(ψ1[φ1]p′),A(ψ2)}) = min({A(ψ1[φ2]p′),A(ψ2)}) = A(ψ1[φ2]p′ ∧ ψ2) =
A(ψ[φ2]1p′). The other boolean connectives are handled analogously. 2

Equivalences

Proposition 2.8 The following equivalences are valid for all formulas φ, ψ, χ:

(φ ∧ φ)↔ φ Idempotency ∧
(φ ∨ φ)↔ φ Idempotency ∨

(φ ∧ ψ)↔ (ψ ∧ φ) Commutativity ∧
(φ ∨ ψ)↔ (ψ ∨ φ) Commutativity ∨

(φ ∧ (ψ ∧ χ))↔ ((φ ∧ ψ) ∧ χ) Associativity ∧
(φ ∨ (ψ ∨ χ))↔ ((φ ∨ ψ) ∨ χ) Associativity ∨

(φ ∧ (ψ ∨ χ))↔ (φ ∧ ψ) ∨ (φ ∧ χ) Distributivity ∧∨
(φ ∨ (ψ ∧ χ))↔ (φ ∨ ψ) ∧ (φ ∨ χ) Distributivity ∨∧

(φ ∧ φ)↔ φ Absorption ∧
(φ ∨ φ)↔ φ Absorption ∨

(φ ∧ (φ ∨ ψ))↔ φ Absorption ∧∨
(φ ∨ (φ ∧ ψ))↔ φ Absorption ∨∧
(φ ∧ ¬φ)↔ ⊥ Introduction ⊥
(φ ∨ ¬φ)↔ ⊤ Introduction ⊤

¬(φ ∨ ψ)↔ (¬φ ∧ ¬ψ) De Morgan ¬∨
¬(φ ∧ ψ)↔ (¬φ ∨ ¬ψ) De Morgan ¬∧

¬⊤ ↔ ⊥ Propagate ¬⊤
¬⊥ ↔ ⊤ Propagate ¬⊥

23

(φ ∧ ⊤)↔ φ Absorption ⊤∧
(φ ∨ ⊥)↔ φ Absorption ⊥∨

(φ→ ⊥)↔ ¬φ Eliminate ⊥ →
(φ↔ ⊥)↔ ¬φ Eliminate ⊥ ↔
(φ↔ ⊤)↔ φ Eliminate ⊤ ↔
(φ ∨ ⊤)↔ ⊤ Propagate ⊤
(φ ∧ ⊥)↔ ⊥ Propagate ⊥

(φ→ ψ)↔ (¬φ ∨ ψ) Eliminate →
(φ↔ ψ)↔ (φ→ ψ) ∧ (ψ → φ) Eliminate1 ↔
(φ↔ ψ)↔ (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ) Eliminate2 ↔

For simplification purposes the equivalences are typically applied as left to right rules.

2.4 Normal Forms

We define conjunctions of formulas as follows:
∧0

i=1 φi = ⊤.
∧1

i=1 φi = φ1.
∧n+1

i=1 φi =
∧n

i=1 φi ∧ φn+1.

and analogously disjunctions:
∨0

i=1 φi = ⊥.
∨1

i=1 φi = φ1.
∨n+1

i=1 φi =
∨n

i=1 φi ∨ φn+1.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable ¬P .

A clause is a (possibly empty) disjunction of literals.

24

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction
of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of
literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of
complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions
contains a pair of complementary literals P and ¬P .

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF
formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 2.9 For every formula there is an equivalent formula in CNF (and also an
equivalent formula in DNF).

Proof. We consider the case of CNF and propose a naive algorithm.

Apply the following rules as long as possible (modulo associativity and commutativity
of ∧ and ∨):

Step 1: Eliminate equivalences:

(φ↔ ψ) ⇒ECNF (φ→ ψ) ∧ (ψ → φ)

Step 2: Eliminate implications:

(φ→ ψ) ⇒ECNF (¬φ ∨ ψ)

25

Step 3: Push negations downward:

¬(φ ∨ ψ) ⇒ECNF (¬φ ∧ ¬ψ)

¬(φ ∧ ψ) ⇒ECNF (¬φ ∨ ¬ψ)

Step 4: Eliminate multiple negations:

¬¬φ ⇒ECNF φ

Step 5: Push disjunctions downward:

(φ ∧ ψ) ∨ χ ⇒ECNF (φ ∨ χ) ∧ (ψ ∨ χ)

Step 6: Eliminate ⊤ and ⊥:

(φ ∧ ⊤) ⇒ECNF φ

(φ ∧ ⊥) ⇒ECNF ⊥

(φ ∨ ⊤) ⇒ECNF ⊤

(φ ∨ ⊥) ⇒ECNF φ

¬⊥ ⇒ECNF ⊤

¬⊤ ⇒ECNF ⊥

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and 5 are a bit more
complicated.

For step 1, we can prove termination in the following way: We define a function µ
from formulas to positive integers such that µ(⊥) = µ(⊤) = µ(P) = 1, µ(¬φ) = µ(φ),
µ(φ ∧ ψ) = µ(φ ∨ ψ) = µ(φ → ψ) = µ(φ) + µ(ψ), and µ(φ ↔ ψ) = 2µ(φ) + 2µ(ψ) + 1.
Observe that µ is constructed in such a way that µ(φ1) > µ(φ2) implies µ(ψ[φ1]p) >
µ(ψ[φ2]p) for all formulas φ1, φ2, and ψ and positions p. Using this property, we can
show that whenever a formula χ′ is the result of applying the rule of step 1 to a formula χ,
then µ(χ) > µ(χ′). Since µ takes only positive integer values, step 1 must terminate.

Termination of steps 3 and 5 is proved similarly. For step 3, we use a function µ from
formulas to positive integers such that µ(⊥) = µ(⊤) = µ(P) = 1, µ(¬φ) = 2µ(φ),
µ(φ ∧ ψ) = µ(φ ∨ ψ) = µ(φ→ ψ) = µ(φ↔ ψ) = µ(φ) + µ(ψ) + 1. Whenever a formula
χ′ is the result of applying a rule of step 3 to a formula χ, then µ(χ) > µ(χ′). Since µ
takes only positive integer values, step 3 must terminate.

For step 5, we use a function µ from formulas to positive integers such that µ(⊥) =
µ(⊤) = µ(P) = 1, µ(¬φ) = µ(φ) + 1, µ(φ ∧ ψ) = µ(φ → ψ) = µ(φ ↔ ψ) = µ(φ) +
µ(ψ) + 1, and µ(φ ∨ ψ) = 2µ(φ)µ(ψ). Again, if a formula χ′ is the result of applying

26

a rule of step 5 to a formula χ, then µ(χ) > µ(χ′). Since µ takes only positive integer
values, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions
have to be pushed downward in step 5. 2

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the
size of the original one.

Satisfiability-preserving Transformations

The goal

“find a formula ψ in CNF such that φ |=| ψ”

is unpractical.

But if we relax the requirement to

“find a formula ψ in CNF such that φ |= ⊥ ⇔ ψ |= ⊥”

we can get an efficient transformation.

Idea: A formula ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P ↔ φ) is satisfiable where P
is a new propositional variable that does not occur in ψ and works as an abbreviation
for φ.

We can use this rule recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional
factor (each formula P ↔ φ gives rise to at most one application of the distributivity
law).

27

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula into ac-
count.

For example if ψ[φ1 ↔ φ2]p and pol(ψ, p) = −1 then for CNF transformation do ψ[(φ1 ∧
φ2) ∨ (¬φ1 ∧ ¬φ2)]p.

Proposition 2.10 Let P be a propositional variable not occurring in ψ[φ]p.

If pol(ψ, p) = 1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P → φ) is satisfiable.

If pol(ψ, p) = −1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (φ→ P) is satisfiable.

If pol(ψ, p) = 0, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P ↔ φ) is satisfiable.

Proof. Exercise. 2

The number of eventually generated clauses is a good indicator for useful CNF trans-
formations:

ψ ν(ψ) ν̄(ψ)

φ1 ∧ φ2 ν(φ1) + ν(φ2) ν̄(φ1)ν̄(φ2)
φ1 ∨ φ2 ν(φ1)ν(φ2) ν̄(φ1) + ν̄(φ2)
φ1 → φ2 ν̄(φ1)ν(φ2) ν(φ1) + ν̄(φ2)
φ1 ↔ φ2 ν(φ1)ν̄(φ2) + ν̄(φ1)ν(φ2) ν(φ1)ν(φ2) + ν̄(φ1)ν̄(φ2)
¬φ1 ν̄(φ1) ν(φ1)

P,⊤,⊥ 1 1

Optimized CNF

Step 1: Exhaustively apply modulo C of ↔, AC of ∧, ∨:

(φ ∧ ⊤) ⇒OCNF φ

(φ ∨ ⊥) ⇒OCNF φ

(φ↔ ⊥) ⇒OCNF ¬φ

(φ↔ ⊤) ⇒OCNF φ

(φ ∨ ⊤) ⇒OCNF ⊤

(φ ∧ ⊥) ⇒OCNF ⊥

28

(φ ∧ φ) ⇒OCNF φ

(φ ∨ φ) ⇒OCNF φ

(φ ∧ (φ ∨ ψ)) ⇒OCNF φ

(φ ∨ (φ ∧ ψ)) ⇒OCNF φ

(φ ∧ ¬φ) ⇒OCNF ⊥

(φ ∨ ¬φ) ⇒OCNF ⊤

¬⊤ ⇒OCNF ⊥

¬⊥ ⇒OCNF ⊤

(φ→ ⊥) ⇒OCNF ¬φ

(φ→ ⊤) ⇒OCNF ⊤

(⊥ → φ) ⇒OCNF ⊤

(⊤ → φ) ⇒OCNF φ

Step 2: Introduce top-down fresh variables for beneficial subformulas:

ψ[φ]p ⇒OCNF ψ[P]p ∧ def(ψ, p)

where P is new to ψ[φ]p, def(ψ, p) is defined polarity dependent according to Proposi-
tion 2.10 and ν(ψ[φ]p) > ν(ψ[P]p ∧ def(ψ, p)).

Remark: Although computing ν is not practical in general, the test ν(ψ[φ]p) > ν(ψ[P]p ∧
def(ψ, p)) can be computed in constant time.

Step 3: Eliminate equivalences polarity dependent:

ψ[φ↔ ψ]p ⇒OCNF ψ[(φ→ ψ) ∧ (ψ → φ)]p

if pol(ψ, p) = 1 or pol(ψ, p) = 0

ψ[φ↔ ψ]p ⇒OCNF ψ[(φ ∧ ψ) ∨ (¬ψ ∧ ¬φ)]p

if pol(ψ, p) = −1

29

Step 4: Apply steps 2, 3, 4, 5 of ⇒ECNF

Remark: The ⇒OCNF algorithm is already close to a state of the art algorithm. Missing
are further redundancy tests and simplification mechanisms we will discuss later on in
this section.

30

