
Rule-Based Algorithm

Deduce (N ;D;⊤) → (N ;D ∧ f(x, y) ≈ 1;⊤)

provided f(x, y) is undefined in N ∧D, for any x, y ∈ {1, 2, 3, 4}.

Conflict (N ;D;⊤) → (N ;D;⊥)

provided for y 6= z (i) f(x, y) = f(x, z) for f(x, y), f(x, z) defined in N ∧ D for some
x, y, z or (ii) f(y, x) = f(z, x) for f(y, x), f(z, x) defined in N ∧ D for some x, y, z
or (iii) f(x, y) = f(x′, y′) for f(x, y), f(x′, y′) defined in N ∧ D and [x, x′ ∈ {1, 2} or
x, x′ ∈ {3, 4}] and [y, y′ ∈ {1, 2} or y, y′ ∈ {3, 4}] and x 6= x′ or y 6= y′.

Backtrack (N ;D′ ∧ f(x, y) ≈ z ∧D′′;⊥) → (N ;D′ ∧ f(x, y) ≈ z + 1;⊤)

provided z < 4 and D′′ = ⊤ or D′′ contains only equations of the form f(x′, y′) ≈ 4.

Fail (N ;D;⊥) → (N ;⊤;⊥)

provided D 6= ⊤ and D contains only equations of the form f(x, y) ≈ 4.

Properties: Rules are applied don’t care non-deterministically.

An algorithm (set of rules) is sound if whenever it declares having found a solution it
actually has computed a solution.

It is complete if it finds a solution if one exists.

It is terminating if it never runs forever.

Proposition 0.1 (Soundness) The rules Deduce, Conflict, Backtrack and Fail are
sound. Starting from an initial state (N ;⊤;⊤):
(i) for any final state (N ;D;⊤), the equations in N ∧D are a solution, and,
(ii) for any final state (N ;⊤;⊥) there is no solution to the initial problem.

Proof . (i) So assume a final state (N ;D;⊤) such that no rule is applicable. In particu-
lar, this means that for all x, y ∈ {1, 2, 3, 4} the square f(x, y) is defined in N ∧D as for
otherwise Deduce would be applicable, contradicting that (N ;D;⊤) is a final state. So
all squares are defined by N ∧D. What remains to be shown is that those assignments
actually constitute a solution to the Sudoku. However, if some assignment in N ∧ D
results in a repetition of a number in some column, row or 2 × 2 box of the Sudoku,
then rule Conflict is applicable, contradicting that (N ;D;⊤) is a final state. In sum,
(N ;D;⊤) is a solution to the Sudoku and hence the rules Deduce, Conflict, Backtrack
and Fail are sound.
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(ii) So assume that the initial problem (N ;⊤;⊤) has a solution. We prove that in this
case we cannot reach a state (N ;⊤;⊥). Let (N ;D;⊤) be an arbitrary state still having a
solution. This includes the initial state if D = ⊤. We prove that we can correctly decide
the next square. Since (N ;D;⊤) still has a solution the only applicable rule is Deduce
and we generate (N ;D ∧ f(x, y) ≈ 1;⊤) for some x, y ∈ {1, 2, 3, 4}. If (N ;D ∧ f(x, y) ≈
1;⊤) still has a solution we are done. So assume (N ;D ∧ f(x, y) ≈ 1;⊤) does not have
a solution anymore. But then eventually we will apply Conflict and Backtrack to a state
(N ;D ∧ f(x, y) ≈ 1 ∧D′;⊥) where D′ only contains equations of the form f(x′, y′) ≈ 4
resulting in (N ;D ∧ f(x, y) ≈ 2;⊤). Now repeating the argument we will eventually
reach a state (N ;D ∧ f(x, y) ≈ k;⊤) that has a solution.

Proposition 0.2 (Completeness) The rules Deduce, Conflict, Backtrack and Fail are
complete. For any solution N ∧D of the Sudoku there is a sequence of rule applications
such that (N ;D;⊤) is a final state.

Proof . A particular strategy for the rule applications is needed to indeed generate
(N ;D;⊤) out of (N ;⊤;⊤) for some solution N ∧ D. Without loss of generality we
assume the assignments in D to be sorted such that assignments to a number k ∈
{1, 2, 3, 4} precede any assignment to some number l > k. So if, for example, N does
not assign all four values 1, then the first assignment in D is of the form f(x, y) ≈ 1
for some x, y. Now we apply the following strategy, subsequently adding all assignments
from D to (N ;⊤;⊤). Let us assume we have already achieved state (N ;D′;⊤) and the
next assignment from D to be established is f(x, y) ≈ k, meaning f(x, y) is not defined
in N ∧D′. Then until l = k we do the following, starting from l = 1. We apply Deduce
adding the assignment f(x, y) ≈ l. If Conflict is applicable to this assignment, we apply
Backtrack, generating the new assignment f(x, y) ≈ l + 1 and continue.

We need to show that this strategy in fact eventually adds f(x, y) ≈ k to D′. As long as
l < k any added assignment f(x, y) ≈ l results in rule Conflict applicable, because D is
ordered and all four values for all l < k are already established. The eventual assignment
f(x, y) ≈ k does not generate a conflict because D is a solution. For the same reason,
the rule Fail is never applicable. Therefore, the strategy generates (N ;D;⊤) out of
(N ;⊤;⊤).

Proposition 0.3 (Termination) The rules Deduce, Conflict, Backtrack and Fail ter-
minate on any input state (N ;⊤;⊤).

Proof . Once the rule Fail is applicable, no other rule is applicable on the result any-
more. So we do not need to consider rule Fail for termination. The idea of the proof is
that we assign a measure over the natural numbers to every state such that each rule
strictly decreases the measure and that the measure cannot get below 0. For any given
state S = (N ;D; ∗) with ∗ ∈ {⊤,⊥} with D = f(x1, y1) ≈ k1 ∧ . . . ∧ f(xn, yn) ≈ kn we
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assign the measure φ(S) by φ(S) = 249 − p−
∑n

i=1 ki · 2
49−3i where p = 0 if ∗ = ⊤ and

p = 1 otherwise.

The measure φ(S) is well-defined and cannot become negative as n ≤ 16, p ≤ 1, and
1 ≤ ki ≤ 4 for any D. In particular, the former holds because the rule Deduce only adds
values for undefined squares and the overall number of squares is bound to 16. What
remains to be shown is that each rule application decreases φ. We do this by a case
analysis over the rules.

Deduce: φ((N ;D;⊤)) = 249 −
∑n

i=1 ki · 2
49−3i > 249 −

∑n
i=1 ki · 2

49−3i − 1 · 249−3(n+1) =
φ((N ;D ∧ f(x, y) ≈ 1;⊤))

Conflict: φ((N ;D;⊤)) = 249−
∑n

i=1 ki · 2
49−3i > 249− 1−

∑n
i=1 ki · 2

49−3i = φ((N ;D;⊥))

Backtrack: φ((N ;D′ ∧ f(xl, yl) ≈ kl ∧ D′′;⊥)) = 249 − 1 − (
∑l−1

i=1 ki · 2
49−3i) − kl ·

249−3l −
∑n

i=l+1 ki · 2
49−3i > 249 − (

∑l−1
i=1 ki · 2

49−3i) − (kl + 1) · 249−3l = φ(N ;D′ ∧
f(xl, yl) ≈ kl + 1;⊤) in particular because 249−3l >

∑n
i=l+1 ki · 2

49−3i + 1.

Confluence

Another important property for don’t care non-deterministic rule based definitions of
algorithms is confluence.

It means that whenever several sequences of rules are applicable to a given states, the
respective results can be rejoined by further rule applications to a common problem
state.

Proposition 0.4 (Deduce and Conflict are Locally Confluent) Given a state (N ;D;⊤)
out of which two different states (N ;D1;⊤) and (N ;D2;⊥) can be generated by Deduce
and Conflict in one step, respectively, then the two states can be rejoined to a state
(N ;D′; ∗) via further rule applications.

Proof . Consider an application of Deduce and Conflict to a state (N ;D;⊤) resulting
in (N ;D ∧ f(x, y) ≈ 1;⊤) and (N ;D;⊥), respectively. We will now show that in fact
we can rejoin the two states. Notice that since Conflict is applicable to (N ;D;⊤) it is
also applicable to (N ;D ∧ f(x, y) ≈ 1;⊤). So the first sequence of rejoin steps is

(N ;D ∧ f(x, y) ≈ 1;⊤) → (N ;D ∧ f(x, y) ≈ 1;⊥)
→ (N ;D ∧ f(x, y) ≈ 2;⊤)
→∗ (N ;D ∧ f(x, y) ≈ 4;⊥)

where we subsequently applied Conflict and Backtrack to reach the state (N ;D ∧
f(x, y) ≈ 4;⊥) and →∗ abbreviates those finite number of rule applications. Finally
applying Backtrack (or Fail) to (N ;D;⊥) and (N ;D ∧ f(x, y) ≈ 4;⊥) results in the
same state.
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Result

It works.

But: It looks like a lot of effort for a problem that one can solve with a little bit of
thinking.

Reason: Our approach is very general, it can actually be used to “pontentially solve”
any problem in computer science.

This difference is also important for automated reasoning:

• For problems that are well-known and frequently used, we can develop optimal
specialized methods.
⇒ Algorithms & Data-structures

• For new/unknown/changing problems, we have to develop generic methods that
do “something useful”.
⇒ this lecture: Logic + Calculus + Implementation

• Combining the two approaches
⇒ Automated Reasoing II (next semester): Logic modulo Theory + Calculus +
Implementation

Topics of the Course

Preliminaries

math repetition
computer science repetition
orderings
induction (repetition)
rewrite systems

Propositional logic

logic: syntax, semantics
calculi: superposition, CDCL
implementation: 2-watched literal, clause learning

First-order predicate logic

logic: syntax, semantics, model theory
calculus: superposition
implementation: sharing, indexing

First-order predicate logic with equality
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equational logic: unit equations
calculus: term rewriting systems, Knuth-Bendix completion
implementation: dependency pairs
first-order logic with equality
calculus: superposition
implementation: rewriting

Literature

Is a big problem, actually you are the “guinea-pigs” for a new textbook.

Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge Univ. Press,
1998. (Textbook on equational reasoning)

Armin Biere and Marijn Heule and Hans van Maaren and Toby Walsh (editors): Hand-
book of Satisfiability, IOS Press, 2009. (Be careful: Handbook, hard to read)

Alan Robinson and Andrei Voronkov (editors): Handbook of Automated Reasoning, Vol
I & II, Elsevier, 2001. (Be careful: Handbook, very hard to read)

1 Preliminaries

• math repetition

• computer science repetition

• orderings

• induction (repetition)

• rewrite systems

1.1 Mathematical Prerequisites

N = {0, 1, 2, . . .} is the set of natural numbers

N+ is the set of positive natural numbers without 0

Z, Q, R denote the integers, rational numbers and the real numbers, respectively.
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Multisets

Given a set M , a multi-set S over M is a mapping S : M → N, where S specifies the
number of occurrences of elements m of the base set M within the multiset S.

We use the standard set notations ∈, ⊂, ⊆, ∪, ∩ with the analogous meaning for
multisets, e.g., (S1 ∪ S2)(m) = S1(m) + S2(m).

We also write multi-sets in a set like notation, e.g., the multi-set S = {1, 2, 2, 4} denotes
a multi-set over the set {1, 2, 3, 4} where S(1) = 1, S(2) = 2, S(3) = 0, and S(4) = 1.

A multi-set S over a set M is finite if {m ∈ M | S(m) > 0} is finite. In this lecture we
only consider finite multi-sets.

Relations

An n-ary relation R over some set M is a subset of Mn: R ⊆Mn.

For two n-ary relations R,Q over some set M , their union (∪) or intersection (∩) is
again an n-ary relation, where
R ∪Q := {(m1, . . . , mn) ∈M | (m1, . . . , mn) ∈ R or (m1, . . . , mn) ∈ Q}
R ∩Q := {(m1, . . . , mn) ∈M | (m1, . . . , mn) ∈ R and (m1, . . . , mn) ∈ Q} .

A relation Q is a subrelation of a relation R if Q ⊆ R.

The characteristic function of a relation R or sometimes called predicate indicates mem-
bership. In addition of writing (m1, . . . , mn) ∈ R we also write R(m1, . . . , mn). So the
predicate R(m1, . . . , mn) holds or is true if in fact (m1, . . . , mn) belongs to the relation
R.

Words

Given a nonempty alphabet Σ the set Σ∗ of finite words over Σ is defined by

(i) the empty word ǫ ∈ Σ∗

(ii) for each letter a ∈ Σ also a ∈ Σ∗

(iii) if u, v ∈ Σ∗ so uv ∈ Σ∗ where uv denotes the concatenation of u and v.

The length |u| of a word u ∈ Σ∗ is defined by

(i) |ǫ| := 0,

(ii) |a| := 1 for any a ∈ Σ and

(iii) |uv| := |u|+ |v| for any u, v ∈ Σ∗.
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