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What is Automated Deduction about?

Generic Problem Solving by a Computer Program.

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a research paper – neither stylistically
nor typographically.
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Introductory Example: Solving 4× 4 Sudoku
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3 1
1 2

Start

2 1 4 3
3 4 1 2
4 2 3 1
1 3 2 4
Solution

Formal Model

Represent board by a function f(x, y) mapping cells to their value.

2 1

3 1
1 2

Start

N = f(1, 1) ≈ 2 ∧ f(1, 2) ≈ 1∧
f(3, 3) ≈ 3 ∧ f(3, 4) ≈ 1∧
f(4, 1) ≈ 1 ∧ f(4, 3) ≈ 2

∧ is conjunction and ⊤ the empty conjunction.

A state is described by a triple (N ; D; r) where

• N contains the equations for the starting Sudoku

• D a conjunction of further equations computed by the algorithm

• r ∈ {⊤,⊥}

Initial state is (N ;⊤;⊤).

A square f(x, y) where x, y ∈ {1, 2, 3, 4} is called defined by N ∧D if there is an equation
f(x, y) ≈ z, z ∈ {1, 2, 3, 4} in N or D. For otherwise f(x, y) it is called undefined.
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Rule-Based Algorithm

Deduce (N ; D;⊤) → (N ; D ∧ f(x, y) ≈ 1;⊤)

provided f(x, y) is undefined in N ∧D, for any x, y ∈ {1, 2, 3, 4}.

Conflict (N ; D;⊤) → (N ; D;⊥)

provided for y 6= z (i) f(x, y) = f(x, z) for f(x, y), f(x, z) defined in N ∧ D for some
x, y, z or (ii) f(y, x) = f(z, x) for f(y, x), f(z, x) defined in N ∧ D for some x, y, z
or (iii) f(x, y) = f(x′, y′) for f(x, y), f(x′, y′) defined in N ∧ D and [x, x′ ∈ {1, 2} or
x, x′ ∈ {3, 4}] and [y, y′ ∈ {1, 2} or y, y′ ∈ {3, 4}] and x 6= x′ or y 6= y′.

Backtrack (N ; D′ ∧ f(x, y) ≈ z ∧D′′;⊥) → (N ; D′ ∧ f(x, y) ≈ z + 1;⊤)

provided z < 4 and D′′ = ⊤ or D′′ contains only equations of the form f(x′, y′) ≈ 4.

Fail (N ; D;⊥) → (N ;⊤;⊥)

provided D 6= ⊤ and D contains only equations of the form f(x, y) ≈ 4.

Properties: Rules are applied don’t care non-deterministically.

An algorithm (set of rules) is sound if whenever it declares having found a solution it
actually has computed a solution.

It is complete if it finds a solution if one exists.

It is terminating if it never runs forever.

Proposition 0.1 (Soundness) The rules Deduce, Conflict, Backtrack and Fail are
sound. Starting from an initial state (N ;⊤;⊤):
(i) for any final state (N ; D;⊤), the equations in N ∧D are a solution, and,
(ii) for any final state (N ;⊤;⊥) there is no solution to the initial problem.

Proof. (i) So assume a final state (N ; D;⊤) such that no rule is applicable. In particu-
lar, this means that for all x, y ∈ {1, 2, 3, 4} the square f(x, y) is defined in N ∧D as for
otherwise Deduce would be applicable, contradicting that (N ; D;⊤) is a final state. So
all squares are defined by N ∧D. What remains to be shown is that those assignments
actually constitute a solution to the Sudoku. However, if some assignment in N ∧ D
results in a repetition of a number in some column, row or 2 × 2 box of the Sudoku,
then rule Conflict is applicable, contradicting that (N ; D;⊤) is a final state. In sum,
(N ; D;⊤) is a solution to the Sudoku and hence the rules Deduce, Conflict, Backtrack
and Fail are sound.
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(ii) So assume that the initial problem (N ;⊤;⊤) has a solution. We prove that in this
case we cannot reach a state (N ;⊤;⊥). Let (N ; D;⊤) be an arbitrary state still having a
solution. This includes the initial state if D = ⊤. We prove that we can correctly decide
the next square. Since (N ; D;⊤) still has a solution the only applicable rule is Deduce
and we generate (N ; D ∧ f(x, y) ≈ 1;⊤) for some x, y ∈ {1, 2, 3, 4}. If (N ; D ∧ f(x, y) ≈
1;⊤) still has a solution we are done. So assume (N ; D ∧ f(x, y) ≈ 1;⊤) does not have
a solution anymore. But then eventually we will apply Conflict and Backtrack to a state
(N ; D ∧ f(x, y) ≈ 1 ∧D′;⊥) where D′ only contains equations of the form f(x′, y′) ≈ 4
resulting in (N ; D ∧ f(x, y) ≈ 2;⊤). Now repeating the argument we will eventually
reach a state (N ; D ∧ f(x, y) ≈ k;⊤) that has a solution.

Proposition 0.2 (Completeness) The rules Deduce, Conflict, Backtrack and Fail are
complete. For any solution N ∧D of the Sudoku there is a sequence of rule applications
such that (N ; D;⊤) is a final state.

Proposition 0.3 (Termination) The rules Deduce, Conflict, Backtrack and Fail ter-
minate on any input state (N ;⊤;⊤).

Confluence

Another important property for don’t care non-deterministic rule based definitions of
algorithms is confluence.

It means that whenever several sequences of rules are applicable to a given states, the
respective results can be rejoined by further rule applications to a common problem
state.

Proposition 0.4 (Deduce and Conflict are Locally Confluent) Given a state (N ; D;⊤)
out of which two different states (N ; D1;⊤) and (N ; D2;⊥) can be generated by Deduce
and Conflict, respectively, then the two states can be rejoined to a state (N ; D′; ∗) via
further rule applications.

Result

It works.

But: It looks like a lot of effort for a problem that one can solve with a little bit of
thinking.

Reason: Pupils learn not only axioms or rules, but also recipes to work efficiently with
these.

This difference is also important for automated reasoning:
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