
6.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K-minimal infinite rewrite sequences

t1 →
∗

R u1 →K t2 →
∗

R u2 →K . . .

using well-founded orderings.

We observe that the requirements for the orderings used here are less restrictive than
for reduction orderings:

K-rules are only used at the top, so we need stability under substitutions, but com-
patibility with contexts is unnecessary.

While →K-steps should be decreasing, for →R-steps it would be sufficient to show
that they are not increasing.

This motivates the following definitions:

Rewrite quasi-ordering %:

reflexive and transitive binary relation, stable under substitutions, compatible with
contexts.

Reduction pair (%,≻):

% is a rewrite quasi-ordering.

≻ is a well-founded ordering that is stable under substitutions.

% and ≻ are compatible: % ◦ ≻ ⊆ ≻ or ≻ ◦ % ⊆ ≻.

(In practice, ≻ is almost always the strict part of the quasi-ordering %.)

Clearly, for any reduction ordering ≻, (�,≻) is a reduction pair. More general reduction
pairs can be obtained using argument filterings:

Argument filtering π:

π : Ω ∪ Ω♯ → N ∪ list of N

π(f) =

{

i ∈ {1, . . . , arity(f)}, or

[i1, . . . , ik], where 1 ≤ i1 < · · · < ik ≤ arity(f), 0 ≤ k ≤ arity(f)

Extension to terms:

π(x) = x

π(f(t1, . . . , tn)) = π(ti), if π(f) = i

π(f(t1, . . . , tn)) = f ′(π(ti1), . . . , π(tik)), if π(f) = [i1, . . . , ik],
where f ′/k is a new function symbol.

123



Let ≻ be a reduction ordering, let π be an argument filtering. Define s ≻π t iff π(s) ≻
π(t) and s %π t iff π(s) � π(t).

Lemma 6.2 (%π,≻π) is a reduction pair.

Proof. Follows from the following two properties:

π(sσ) = π(s)σπ, where σπ is the substitution that maps x to π(σ(x)).

π(s[u]p) =

{

π(s), if p does not correspond to any position in π(s)

π(s)[π(u)]q, if p corresponds to q in π(s)
2

For interpretation-based orderings (such as polynomial orderings) the idea of “cutting
out” certain subterms can be included directly in the definition of the ordering:

Reduction pairs by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Assume that all interpretations fA of function symbols are weakly monotone, i. e.,
ai � bi implies f(a1, . . . , , an) � f(b1, . . . , bn) for all ai, bi ∈ UA.

Define s %A t iff A(β)(s) � A(β)(t) for all assignments β : X → UA; define s ≻A t iff
A(β)(s) ≻ A(β)(t) for all assignments β : X → UA.

Then (%A,≻A) is a reduction pair.

For polynomial orderings, this definition permits interpretations of function symbols
where some variable does not occur at all (e. g., Pf(X, Y ) = 2X + 1 for a binary function
symbol). It is no longer required that every variable must occur with some positive
coefficient.

Theorem 6.3 (Arts and Giesl) Let K be a cycle in the dependency graph of the

TRS R. If there is a reduction pair (%,≻) such that

• l % r for all l → r ∈ R,

• l % r or l ≻ r for all l → r ∈ K,

• l ≻ r for at least one l → r ∈ K,

then there is no K-minimal infinite sequence.

124



Proof. Assume that

t1 →
∗

R u1 →K t2 →
∗

R u2 →K . . .

is a K-minimal infinite rewrite sequence.

As l % r for all l → r ∈ R, we obtain ti % ui by stability under substitutions, compati-
bility with contexts, reflexivity and transitivity.

As l % r or l ≻ r for all l → r ∈ K, we obtain ui (% ∪ ≻) ti+1 by stability under
substitutions.

So we get an infinite (% ∪ ≻)-sequence containing infinitely many ≻-steps (since every
DP in K, in particular the one for which l ≻ r holds, is used infinitely often).

By compatibility of % and ≻, we can transform this into an infinite ≻-sequence, contra-
dicting well-foundedness. 2

The idea can be extended to SCCs in the same way as for the subterm criterion:

Search for a reduction pair (%,≻) such that l % r for all l → r ∈ R and l % r or l ≻ r for
all DPs l → r in the SCC. Delete all DPs in the SCC for which l ≻ r. Then re-compute
SCCs for the remaining graph and re-start.

Example: Consider the following TRS R from [Arts and Giesl]:

minus(x, 0) → x (1)

minus(s(x), s(y)) → minus(x, y) (2)

quot(0, s(y)) → 0 (3)

quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) (4)

(R is not contained in any simplification ordering, since the left-hand side of rule (4) is
embedded in the right-hand side after instantiating y by s(x).)

R has three dependency pairs:

minus♯(s(x), s(y)) → minus♯(x, y) (5)

quot ♯(s(x), s(y)) → quot ♯(minus(x, y), s(y)) (6)

quot ♯(s(x), s(y)) → minus♯(x, y) (7)

The dependency graph of R is

(5) (7) (6)

125



There are exactly two SCCs (and also two cycles). The cycle at (5) can be handled using
the subterm criterion with π(minus♯) = 1. For the cycle at (6) we can use an argument
filtering π that maps minus to 1 and leaves all other function symbols unchanged (that is,
π(g) = [1, . . . , arity(g)] for every g different from minus .) After applying the argument
filtering, we compare left and right-hand sides using an LPO with precedence quot > s
(the precedence of other symbols is irrelevant). We obtain l ≻ r for (6) and l % r for
(1), (2), (3), (4), so the previous theorem can be applied.

The methods described so far are particular cases of DP processors:

A DP processor

(G, R)

(G1, R1), . . . , (Gn, Rn)

takes a graph G and a TRS R as input and produces a set of pairs consisting of a graph
and a TRS.

It is sound and complete if there are K-minimal infinite sequences for G and R if and
only if there are K-minimal infinite sequences for at least one of the pairs (Gi, Ri).

Examples:

(G, R)

(SCC1, R), . . . , (SCCn, R)

where SCC1, . . . , SCCn are the strongly connected components of G.

(G, R)

(G \ N, R)

if there is an SCC of G and a simple projection π such that π(l) D π(r) for all DPs
l → r in the SCC, and N is the set of DPs of the SCC for which π(l) ⊲ π(r).

(and analogously for reduction pairs)

The dependency method can also be used for proving termination of innermost rewriting:

s
i

−→R t if s →R t at position p and no rule of R can be applied at a position strictly
below p. (DP processors for innermost termination are more powerful than for ordinary
termination, and for program analysis, innermost termination is usually sufficient.)

126


