6.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K-minimal infinite rewrite sequences
tl —>EU1 —>Kt2 —>}u2 — K ...

using well-founded orderings.

We observe that the requirements for the orderings used here are less restrictive than
for reduction orderings:

K-rules are only used at the top, so we need stability under substitutions, but com-
patibility with contexts is unnecessary.

While — g-steps should be decreasing, for — g-steps it would be sufficient to show
that they are not increasing.

This motivates the following definitions:
Rewrite quasi-ordering 77

reflexive and transitive binary relation, stable under substitutions, compatible with
contexts.

Reduction pair (77, >):
> is a rewrite quasi-ordering.
> is a well-founded ordering that is stable under substitutions.
>~ and > are compatible: =~ o> C > or = o C ».

(In practice, > is almost always the strict part of the quasi-ordering 7-.)

Clearly, for any reduction ordering >, (=, >) is a reduction pair. More general reduction
pairs can be obtained using argument filterings:

Argument filtering :
m: QU — NUIist of N

() = {z e {1l,...,arity(f)}, or

[i1, ..., 0], where 1 <y < -+ < <arity(f), 0 <k < arity(f)
Extension to terms:
m(z) ==
T(f(tr,... tn)) =m(t;), if w(f) =1
7(f(te, .. tn) = f(7(tyy), .. 7(ts)), i 7(f) = [in, -+, k)

where f’/k is a new function symbol.
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Let > be a reduction ordering, let 7 be an argument filtering. Define s >, t iff 7w(s) >~
7(t) and s 72, t iff w(s) = 7w(¢).

Lemma 6.2 (., >,) Is a reduction pair.

Proof. Follows from the following two properties:
7(so) = m(s)o., where o, is the substitution that maps x to m(o(x)).

7(s)

, if p does not correspond to any position in 7(s)
m(s)[m(u)],, if p corresponds to ¢ in m(s)

m(sulp) = {

For interpretation-based orderings (such as polynomial orderings) the idea of “cutting
out” certain subterms can be included directly in the definition of the ordering:

Reduction pairs by interpretation:
Let A be a Y-algebra; let > be a well-founded strict partial ordering on its universe.

Assume that all interpretations f4 of function symbols are weakly monotone, i.e.,
a; = b; implies f(aq,...,,a,) = f(b1,...,b,) for all a;,b; € Uy.

Define s 7— 4 ¢ iff A(B)(s) = A(G)(t) for all assignments 5 : X — Uy; define s >4 ¢ iff
A(B)(s) = A(B)(t) for all assignments §: X — Uy.

Then (74, =) is a reduction pair.

For polynomial orderings, this definition permits interpretations of function symbols
where some variable does not occur at all (e.g., Pr(X,Y) = 2X + 1 for a binary function
symbol). It is no longer required that every variable must occur with some positive
coefficient.

Theorem 6.3 (Arts and Giesl) Let K be a cycle in the dependency graph of the
TRS R. If there is a reduction pair (=, >) such that

ol xzrforall —reR,
el >=rorl>=rforall—rekK,

e [ > r for at least onel — r € K,

then there is no K-minimal infinite sequence.
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Proof. Assume that
tl —>}}U,1 —>Kt2 —>}}U,2 — K ...

is a K-minimal infinite rewrite sequence.

Asl 7z r for alll — r € R, we obtain t; 7 u; by stability under substitutions, compati-
bility with contexts, reflexivity and transitivity.

Asl zrorl»rforall — r € K, we obtain u; (%ZU>) ;41 by stability under
substitutions.

So we get an infinite (77 U >)-sequence containing infinitely many >~-steps (since every
DP in K, in particular the one for which [ > r holds, is used infinitely often).

By compatibility of 7Z and >, we can transform this into an infinite >-sequence, contra-
dicting well-foundedness. O

The idea can be extended to SCCs in the same way as for the subterm criterion:

Search for a reduction pair (27, >) such that [ 77 r foralll — r € Rand [ 77 r or [ > r for
all DPs [ — r in the SCC. Delete all DPs in the SCC for which [ > r. Then re-compute
SCCs for the remaining graph and re-start.

Example: Consider the following TRS R from [Arts and Giesl]:

minus(z,0) — x (1)
minus(s(x), s(y)) — minus(x,y) (2)
quot(0, s(y)) — 0 (3)
quot(s(x), s(y)) — s(quot(minus(z,y),s(y)))  (4)

(R is not contained in any simplification ordering, since the left-hand side of rule (4) is
embedded in the right-hand side after instantiating y by s(z).)

R has three dependency pairs:
minus®(s(z), s(y)) — minus®(x, y) (5)

quot’(s(x), s(y)) — quot*(minus(z,y),s(y))  (6)
quott(s(z), s(y)) — minus*(z,y) (7)

The dependency graph of R is

() (7) (6)
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There are exactly two SCCs (and also two cycles). The cycle at (5) can be handled using
the subterm criterion with m(minus*) = 1. For the cycle at (6) we can use an argument
filtering 7 that maps minus to 1 and leaves all other function symbols unchanged (that is,
7(g) = [1,...,arity(g)] for every g different from minus.) After applying the argument
filtering, we compare left and right-hand sides using an LPO with precedence quot > s
(the precedence of other symbols is irrelevant). We obtain [ > r for (6) and [ = r for
(1), (2), (3), (4), so the previous theorem can be applied.

The methods described so far are particular cases of DP processors:

A DP processor

(G, R)
(G, R1), ..., (Gu, Ry)

takes a graph GG and a TRS R as input and produces a set of pairs consisting of a graph
and a TRS.

It is sound and complete if there are K-minimal infinite sequences for G and R if and
only if there are K-minimal infinite sequences for at least one of the pairs (G;, R;).

Examples:

(G, R)
(SCCL,R), ..., (SCCw. R)

where SCCY, ..., SCC, are the strongly connected components of G.

(G, R)
(G\N, R)

if there is an SCC of G and a simple projection 7 such that 7(l) > m(r) for all DPs
[ — r in the SCC, and N is the set of DPs of the SCC for which 7 (l) > 7 (r).

(and analogously for reduction pairs)

The dependency method can also be used for proving termination of innermost rewriting:
s ——p tif s —p t at position p and no rule of R can be applied at a position strictly
below p. (DP processors for innermost termination are more powerful than for ordinary
termination, and for program analysis, innermost termination is usually sufficient.)
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