3.12 Ordered Resolution with Selection

Motivation: Search space for Res very large.
Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.19) one only needs to
resolve and factor maximal atoms
= if the calculus is restricted to inferences involving maximal atoms, the proof
remains correct
= ordering restrictions

2. In the proof, it does not really matter with which negative literal an inference is
performed
= choose a negative literal don’t-care-nondeterministically
= selection

Selection Functions

A selection function is a mapping

S:C ~— set of occurrences of negative literals in C'

Example of selection with selected literals indicated as :
VoAV B
JEBJva

Intuition:

e [f a clause has at least one selected literal, compute only inferences that involve a
selected literal.

e If a clause has no selected literals, compute only inferences that involve a maximal
literal.

Resolution Calculus Resg

The resolution calculus Resg is parameterized by

e a selection function S

e and a total and well-founded atom ordering .
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In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly)
maximal literals of ground instances:

A literal L is called [strictly] maximal in a clause C' if and only if there exists a ground
substitution o such that Lo is [strictly] maximal in Co (i.e., if for no other L' in C:
Lo < L'c [Lo < L'o)).

DV B Cv-A
(DvC)o

[ordered resolution with selection]

if the following conditions are satisfied:
(i) o = mgu(4, B);
(ii) Bo strictly maximal in Do V Bo;
(iii) nothing is selected in D V B by S;
)

(iv) either —A is selected, or else nothing is selected in C'V = A and —Ac is maximal in

Co Vv -Ao.

AV B
Cng\/iAv)a lordered factorization|
if the following conditions are satisfied:

(i) o = mgu(A, B);
(ii) Ac is maximal in Co V Ao V Bo;
(iii) nothing is selected in C'V AV B by S.

Special Case: Propositional Logic

For ground clauses the resolution inference rule simplifies to

DV A Cv-A
DvC

if the following conditions are satisfied:
(i) A= D;
(ii) nothing is selected in DV A by S;
(i) —A is selected in C'V = A, or else nothing is selected in C'V =A and =A > max(C).

64



Note: For positive literals, A >= D is the same as A > max(D).

Analogously, the factorization rule simplifies to

CVAVA
CVA

if the following conditions are satisfied:

(i) A is the largest literal in C'V AV A;
(ii) nothing is selected in C'V AV A by S.

Search Spaces Become Smaller

1 AVBEB we assume A > B and
2 Av S as indicated by .
3 -AVBEB The maximal literal in
4 —AvV a clause is depicted in
5 BVB Res 1, 3 red.

6 B Fact 5

7T A Res 6, 4

8 A Res 6, 2

9 L Res 8, 7

With this ordering and selection function the refutation proceeds strictly determinis-
tically in this example. Generally, proof search will still be non-deterministic but the
search space will be much smaller than with unrestricted resolution.

Avoiding Rotation Redundancy

From
CiyvVA Cy,v—-AVB
civCy,Vv B Cs3V B
Cy Vv OV Cs

we can obtain by rotation
CovV-AV B (C3V-B
CiVA Cy VAV Cs
Ci VvV Oy V(s

another proof of the same clause. In large proofs many rotations are possible. However,
if A > B, then the second proof does not fulfill the orderings restrictions.

Conclusion: In the presence of orderings restrictions (however one chooses =) no rota-
tions are possible. In other words, orderings identify exactly one representant in any
class of rotation-equivalent proofs.
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Lifting Lemma for Resg

Lemma 3.36 Let D and C' be variable-disjoint clauses. If

D C
K
Do Cp [propositional inference in Resg |

C/
and if S(Do) ~ S(D), S(Cp) ~ S(C) (that is, “corresponding” literals are selected),
then there exists a substitution T such that
D C
C/I
-

C'=C"r

[inference in Resg]

An analogous lifting lemma holds for factorization.

Saturation of General Clause Sets

Corollary 3.37 Let N be a set of general clauses saturated under Resg, 1. e., Resg(N) C
N. Then there exists a selection function S’ such that S|y = S|y and Gx(N) is also
saturated, I.e.,

Res5(Gx(N)) C Gy (N).

Proof. We first define the selection function S’ such that S’(C) = S(C) for all clauses
C € Gg(N)NN. For C € Gg(N) \ N we choose a fixed but arbitrary clause D € N
with C' € Gx(D) and define S'(C) to be those occurrences of literals that are ground
instances of the occurrences selected by S in D. Then proceed as in the proof of Cor. 3.29
using the above lifting lemma. O

Soundness and Refutational Completeness

Theorem 3.38 Let > be an atom ordering and S a selection function such that
Res3(N) C N. Then

NElsleN

Proof. The “«<” part is trivial. For the “=" part consider first the propositional
level: Construct a candidate interpretation Iy as for unrestricted resolution, except
that clauses C' in N that have selected literals are not productive, even when they are
false in I and when their maximal atom occurs only once and positively. The result
for general clauses follows using Corollary 3.37. O
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Craig-Interpolation

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem 3.39 (Craig 1957) Let ' and G be two propositional formulas such that
F = G. Then there exists a formula H (called the interpolant for F' = G), such that H
contains only prop. variables occurring both in F' and in G, and such that F' = H and

HEG.

Proof. Translate F' and =G into CNF'. let N and M, resp., denote the resulting clause
set. Choose an atom ordering > for which the prop. variables that occur in F' but not in
G are maximal. Saturate N into N* w.r.t. Resg with an empty selection function S .
Then saturate N* U M w.r.t. Resg to derive L. As N* is already saturated, due to the
ordering restrictions only inferences need to be considered where premises, if they are
from N*, only contain symbols that also occur in GG. The conjunction of these premises
is an interpolant H. The theorem also holds for first-order formulas. For universal
formulas the above proof can be easily extended. In the general case, a proof based on
resolution technology is more complicated because of Skolemization. O

Redundancy
So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (Conjecture: e. g., if they are tautologies or if they are subsumed by other
clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C' a ground clause (not necessarily in N). C' is
called redundant w.r.t. N, if there exist C,...,C, € N, n > 0, such that C; < C and
Cy,...,C, EC.

Redundancy for general clauses: C'is called redundant w.r.t. N, if all ground instances
Co of C are redundant w.r.t. Gx(N).

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering < is used for ordering restrictions and for redundancy (and
for the completeness proof).
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Examples of Redundancy

Proposition 3.40 Some redundancy criteria:

e C tautology (i.e., = C) = C redundant w.r.t. any set N.
e Co CD = D redundant w.r.t. N U{C}.
e Co CD = DV Lo redundant w.r.t. NU{C V L, D}.

(Under certain conditions one may also use non-strict subsumption, but this requires a
slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. Resg)

< Resg (N \ Red(N)) € N U Red(N)

Theorem 3.41 Let N be saturated up to redundancy. Then

NeElsleN

Proof (Sketch). (i) Ground case:

e consider the construction of the candidate interpretation Iy for Resg
e redundant clauses are not productive

e redundant clauses in N are not minimal counterexamples for I%
The premises of “essential” inferences are either minimal counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 3.38. O

Monotonicity Properties of Redundancy

Theorem 3.42
(i) N C M = Red(N) C Red(M)
(ii) M C Red(N) = Red(N) C Red(N \ M)

We conclude that redundancy is preserved when, during a theorem proving process,
one adds (derives) new clauses or deletes redundant clauses. Recall that Red(N) may
include clauses that are not in N.
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