2.7 Example: Sudoku

	1	2	3	4	5	6	7	8	9
1								1	
2	4								
3		2							
4					5		4		7
5			8				3		
6			1		9				
7	3			4			2		
8		5		1					
9				8		6			

Idea: $p_{i,j}^d$ =true iff the value of square i, j is d

For example: $p_{3,5}^8 = true$

Coding Sudoku by Propositional Clauses

- Concrete values result in units: $p_{i,j}^d$
- For every square (i,j) we generate $p_{i,j}^1 \vee \ldots \vee p_{i,j}^9$
- \bullet For every square (i,j) and pair of values d < d' we generate $\neg p_{i,j}^d \vee \neg p_{i,j}^{d'}$
- For every value d and column i we generate $p_{i,1}^d \vee \ldots \vee p_{i,9}^d$ (Analogously for rows and 3×3 boxes)
- For every value d, column i, and pair of rows j < j' we generate $\neg p_{i,j}^d \lor \neg p_{i,j'}^d$ (Analogously for rows and 3×3 boxes)

Constraint Propagation is Unit Propagation

	1	2	3	4	5	6	7	8	9
1								1	
2	4								
3		2							
4					5		4		7
5			8				3		
6			1		9				
7	3			4	7		2		
8		5		1					
9				8		6			

From $\neg p_{1,7}^3 \lor \neg p_{5,7}^3$ and $p_{1,7}^3$ we obtain by unit propagating $\neg p_{5,7}^3$ and further from $p_{5,7}^1 \lor p_{5,7}^2 \lor p_{5,7}^3 \lor p_{5,7}^4 \lor \dots \lor p_{5,7}^9$ we get $p_{5,7}^1 \lor p_{5,7}^2 \lor p_{5,7}^4 \lor \dots \lor p_{5,7}^9$ (and finally $p_{5,7}^7$).

2.8 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a fixed ordering on propositional variables,

 \Rightarrow canonical representation of formulas.

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge Univ. Press, 2000.

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.

 \Rightarrow semi-canonical representation of formulas.

Implementation needs DPLL (and OBDDs) as subroutines.

Ordered resolution Tableau calculus Hilbert calculus Sequent calculus Natural deduction

see next chapter