What is Automated Deduction?

Automated deduction:

Logical reasoning using a computer program.

Task:

Prove:
$$\frac{a}{a+1} = 1 + \frac{-1}{a+1}$$
.

$$\frac{a}{a+1}$$

$$1 + \frac{-1}{a+1}$$

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$

$$x + 0 = x \tag{1}$$

$$1 + \frac{-1}{a+1}$$

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$

$$= \frac{a + (1 + (-1))}{a + 1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$1 + \frac{-1}{a+1}$$

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$

$$=rac{a+(1+(-1))}{a+1}$$

$$=\frac{(a+1)+(-1)}{a+1}$$

$$1+\frac{-1}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$

$$=rac{a+(1+(-1))}{a+1}$$

$$= \frac{(a+1)+(-1)}{a+1}$$

$$=\frac{a+1}{a+1}+\frac{-1}{a+1}$$

$$1 + \frac{-1}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$

$$=rac{a+(1+(-1))}{a+1}$$

$$=\frac{(a+1)+(-1)}{a+1}$$

$$=\frac{a+1}{a+1}+\frac{-1}{a+1}$$

$$=1+\frac{-1}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

How could we write a program that takes a set of equations and two terms and tests whether the terms can be connected via a chain of equalities?

It is easy to write a program that applies formulas correctly.

But: correct \neq useful.

$$\frac{a}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$\frac{a}{a+1} \longrightarrow \frac{a+0}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$1+\frac{-1}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1}$$

$$x + 0 = x$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1}$$

$$x + 0 = x$$

$$\frac{a}{a} + \frac{-1}{a+1}$$

$$x + (-x) = 0$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1} \qquad x+0 = x$$
 (1)
$$\frac{a}{a} + \frac{-1}{a+1} \qquad x + (-x) = 0$$
 (2)
$$1 + \frac{-1}{a+\frac{a}{a}} \qquad x + (y+z) = (x+y) + z$$
 (3)

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1} \qquad x+0 = x$$

$$\frac{a}{a} + \frac{-1}{a+1} \qquad x+(-x) = 0$$

$$1 + \frac{-1}{a+\frac{a}{a}} \qquad x+(y+z) = (x+y) + z$$

$$1 + \frac{-1+0}{a+1} \qquad \frac{x}{z} + \frac{y}{z} = \frac{x+y}{z}$$

$$(4)$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

Unrestricted application of equations leads to

- infinitely many equality chains,
- infinitely long equality chains.
- \Rightarrow The chance to find the desired goal is very small.

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

•

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

The terms are equal, if both derivations meet.

$$x+0=x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

Orient equations.

$$x + 0 \to x \tag{1}$$

$$x + (-x) \to 0 \tag{2}$$

$$x + (y + z) \rightarrow (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} \to \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} \to 1$$
 (5)

Orient equations.

Advantage:

Now there are only finitely many and finitely long derivations.

$$x + 0 \to x \tag{1}$$

$$x + (-x) \to 0 \tag{2}$$

$$x + (y + z) \rightarrow (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} \to \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} \to 1$$
 (5)

Orient equations.

But:

Now none of the equations is applicable to one of the terms

$$\frac{a}{a+1}$$
, $1+\frac{-1}{a+1}$

$$x + 0 \to x \tag{1}$$

$$x + (-x) \to 0 \tag{2}$$

$$x + (y + z) \rightarrow (x + y) + z \quad (3)$$

$$\frac{x}{z} + \frac{y}{z} \to \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} \to 1$$
 (5)

The chain of equalities we considered at the beginning looks roughly like this:

Idea:

Derive new equations that enable "shortcuts".

Idea:

Derive new equations that enable "shortcuts".

From

$$x + (-x) \to 0 \tag{2}$$

$$x + (-x) \to 0$$
 (2)
 $x + (y + z) \to (x + y) + z$ (3)

$$(x+y)+(-y)\to x+0$$
 (6)

Idea:

Derive new equations that enable "shortcuts".

From

$$x + (-x) \to 0 \tag{2}$$

$$x + (-x) \to 0$$
 (2)
 $x + (y + z) \to (x + y) + z$ (3)

$$(x+y)+(-y)\to x+0$$
 (6)

Idea:

Derive new equations that enable "shortcuts".

From

$$\frac{x}{z} + \frac{y}{z} \to \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} \to 1$$
 (5)

$$\frac{x+y}{x} \to 1 + \frac{y}{x} \tag{7}$$

Idea:

Derive new equations that enable "shortcuts".

From

$$\frac{x}{z} + \frac{y}{z} \to \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} \to 1$$
 (5)

$$\frac{x+y}{x} \to 1 + \frac{y}{x} \tag{7}$$

Idea:

Derive new equations that enable "shortcuts".

From

$$(x+y)+(-y)\to x+0$$
 (6)

$$\frac{x+y}{x} \to 1 + \frac{y}{x} \tag{7}$$

$$1 + \frac{-y}{x+y} \to \frac{x+0}{x+y} \tag{8}$$

Idea:

Derive new equations that enable "shortcuts".

From

$$(x+y)+(-y)\to x+0$$
 (6)

$$\frac{x+y}{x} \to 1 + \frac{y}{x} \tag{7}$$

$$1 + \frac{-y}{x+y} \to \frac{x+0}{x+y} \tag{8}$$

Idea:

Derive new equations that enable "shortcuts".

Using these equations we can get a chain of equalities of the desired form.

Result

It works.

But: It looks like a lot of effort for a problem that one can solve with a little bit of highschool mathematics.

Reason: Pupils learn not only axioms, but also recipes to work efficiently with these axioms.

Result

It makes a huge difference whether we work with well-known axioms

$$x + 0 = x$$
$$x + (-x) = 0$$

or with "new" unknown ones

```
\forall Agent \ \forall Message \ \forall Key.
knows(Agent, crypt(Message, Key))
\land knows(Agent, Key)
\rightarrow knows(Agent, Message).
```

Result

This difference is also important for automated reasoning:

- For axioms that are well-known and frequently used, we can develop optimal specialized methods.
 - ⇒ Selected Topics in Aut. Reas. (V. Sofronie-Stokkermans)
 - ⇒ Computer Algebra (M. Sagraloff)
- For new axioms, we have to develop methods that do "something reasonable" for arbitrary formulas.
 - \Rightarrow this lecture
- Combining the two approaches
 - ⇒ Automated Reasoing II (next semester)