What is Automated Deduction?

Automated deduction:

Logical reasoning using a computer program.



Introductory Example

Task:

Prove: 7 = 1+
_|_
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Introductory Example

How could we write a program that takes a set of equations and
two terms and tests whether the terms can be connected via a
chain of equalities?

It is easy to write a program that applies formulas correctly.

But: correct # useful.
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Introductory Example
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Introductory Example

Unrestricted application of equations leads to
e infinitely many equality chains,

e infinitely long equality chains.

= The chance to find the desired goal is very small.

23



Introductory Example

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:
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Introductory Example

A better approach:
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A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:
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Introductory Example

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

. e

\ e
\ e

.\./'/

The terms are equal, if both derivations meet.
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Introductory Example
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Introductory Example

Orient equations.
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Introductory Example

Orient equations. x+0— x (1)

Advantage:
- x+(=x)—0 (2)
Now there are only finitely

many and finitely long

derivations. x+(y+z)—(x+y)+z (3)
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Introductory Example

Orient equations.

But:
Now none of the equations
Is applicable to one of the

terms

a+1 a+1

x4+ 0 — x (1)

X+ (=x) =0 (2)

x+(y+z)—=(x+y)+z (3)
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=
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Introductory Example

The chain of equalities we considered at the beginning looks
roughly like this:

A
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Introductory Example

|dea:

Derive new equations that enable “shortcuts’.

A
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Introductory Example

|dea:
Derive new equations that enable “shortcuts’.

From

\./ \ x+ (—x) —0 (2)

x+(y+z)—(x+y)+z (3)

we derive

/ (x+y)+(—y) > x+0 (6)
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Introductory Example

|dea:
Derive new equations that enable “shortcuts’.

From

\./ x4+ (—=x)—0
x+(y+z)—=(x+y)+z (3)
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/

(x+y)+(-y) —x+0
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(6)
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Introductory Example

|dea:

Derive new equations that enable “shortcuts’.
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Introductory Example
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Introductory Example

|dea:

Derive new equations that enable “shortcuts’.
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Introductory Example
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Introductory Example

|dea:
Derive new equations that enable “shortcuts’.

Using these equations we can
get a chain of equalities of the

/ \\A desired form.
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Result

It works.

But: It looks like a lot of effort for a problem that
one can solve with a little bit of highschool mathematics.

Reason: Pupils learn not only axioms, but also recipes

to work efficiently with these axioms.
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Result

It makes a huge difference whether we work with

well-known axioms
x+0=x
x+(—x)=0
or with “new’ unknown ones

VAgent Y Message VKey.
knows(Agent, crypt(Message, Key))
A knows(Agent, Key)
— knows(Agent, Message).
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Result

This difference is also important for automated reasoning:

e For axioms that are well-known and frequently used,
we can develop optimal specialized methods.
= Selected Topics in Aut. Reas. (V. Sofronie-Stokkermans)
= Computer Algebra (M. Sagraloff)

e For new axioms, we have to develop methods that
do “something reasonable” for arbitrary formulas.
= this lecture

e Combining the two approaches
= Automated Reasoing Il (next semester)
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