Assignment 1 (CNF)

Transform the formula

$$\neg \forall w \exists x \neg \forall y \left(P(w, x, y) \leftrightarrow \forall z P(z, y, x) \right)$$

into clause normal form.

Assignment 2 (First-Order Logic) (14 points)

Let $\Sigma = (\Omega, \Pi)$ be a signature; let $\Sigma' = (\{c/0\}, \Pi)$. For any Σ -formula F let $rep_c(F)$ be the Σ' -formula obtained from F by replacing every non-variable argument of a predicate (including \approx) by the constant symbol c. (E.g., if F is $\forall x \exists y P(f(y), x, b) \lor f(x) \approx y$, then $rep_c(F)$ is $\forall x \exists y P(c, x, c) \lor c \approx y$.) Prove: If F is valid, then $rep_c(F)$ is valid.

Assignment 3 (Redundancy) (10 points)

Give an example of two different ground first-order clauses without equality F and G, such that F entails G and G is *not* redundant w.r.t. $\{F\}$. If necessary, specify the atom ordering.

Assignment 4 (Critical Pairs, Termination) (8 + 8 = 16 points)Let E be the following set of equations over $\Sigma = (\{f/1, g/1, h/2, b/0\}, \emptyset).$

$$\begin{split} h(f(b),f(x)) &\approx f(h(b,x)) \qquad (1) \\ g(g(x)) &\approx f(g(x)) \qquad (2) \\ g(h(x,x)) &\approx h(g(x),x) \qquad (3) \end{split}$$

Part (a)

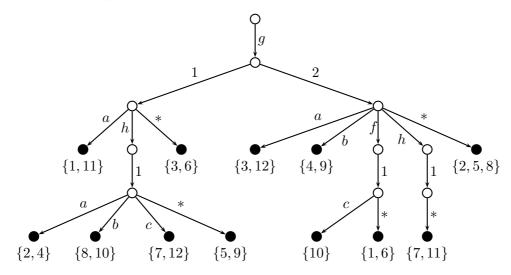
Suppose that all equations in E are turned into rewrite rules by orienting them from left to right. Give all (non-trivial) critical pairs between the resulting rules.

Part (b)

It is possible to orient the equations in E using an appropriate LPO, so that there are no critical pairs between the resulting rules. Give the precedence of the LPO and explain how the equations are oriented.

(10 points)

Assignment 5 (Path Indexing)


$$(6 + 6 = 12 \text{ points})$$

Part (a)

Does the path index below contain the terms $t_1 = g(h(c), h(*)), t_2 = g(h(a), b), t_3 = g(*, *)$? If yes, what are their numbers in the index?

Part (b)

Find the numbers of all terms in the path index that are generalizations of s = g(h(a), f(*)) (that is, terms t such that $s = t\sigma$).

Assignment 6 (Dependency Pairs)

(6 + 6 + 6 = 18 points)

Part (a)

Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{f/2, g/2, h/1, k/1, l/1, b/0\}$. Compute the dependency pairs of the following TRS R:

$$f(x, x) \to h(g(x, k(l(x)))) \qquad (1)$$

$$g(h(x), y) \to f(h(y), x) \qquad (2)$$

$$k(g(x, x)) \to k(b) \qquad (3)$$

$$l(h(x)) \to h(x) \qquad (4)$$

Part (b)

Compute the approximated dependency graph for R and use it to show that R is terminating.

Part (c)

For R, the exact dependency graph and the approximated dependency graph as defined in Sect. 6.1 of the lecture do *not* agree. Where do they differ?