
Lemma 4.57 Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run. Then Red(Ni) ⊆ Red(N∞) and

Red(Ni) ⊆ Red(N∗) for every i.

Proof. Exercise. 2

Corollary 4.58 Ni ⊆ N∗ ∪ Red(N∗) for every i.

Proof. If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w. r. t. Nk+1. Consequently, C is redundant w. r. t. N∗. 2

A run is called fair, if the conclusion of every inference from clauses in N∗ \ Red(N∗) is
contained in some Ni ∪ Red(Ni).

Lemma 4.59 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N∗ is contained in some Ni ∪ Red(Ni), and therefore contained in N∗ ∪
Red(N∗). Hence N∗ is saturated up to redundancy. 2

Theorem 4.60 (Refutational Completeness: Dynamic View) Let N0 ⊢ N1 ⊢ N2 ⊢
. . . be a fair run, let N∗ be its limit. Then N0 has a model if and only if ⊥ /∈ N∗.

Proof. (⇐): By fairness, N∗ is saturated up to redundancy. If ⊥ /∈ N∗, then it has
a term-generated model. Since every clause in N0 is contained in N∗ or redundant
w. r. t. N∗, this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. 2

Superposition: Extensions

Extensions and improvements:

simplification techniques,

selection functions (as for ordered resolution),

redundancy for inferences,

basic strategies,

constraint reasoning.

120



Theory Reasoning

Superposition vs. resolution + equality axioms:

specialized inference rules, thus no inferences with theory axioms,

computation modulo symmetry,

stronger ordering restrictions,

no variable overlaps,

stronger redundancy criterion.

Similar techniques can be used for other theories:

transitive relations,

dense total orderings without endpoints,

commutativity,

associativity and commutativity,

abelian monoids,

abelian groups,

divisible torsion-free abelian groups.

Observations:

no inferences with theory axioms:
yes, usually possible.

computation modulo theory axioms:
often possible, but requires unification and orderings modulo theory.

stronger ordering restrictions, no variable overlaps:
sometimes possible, but in many cases, certain variable overlaps remain necessary.

stronger redundancy criterion:
depends on the model construction.

In many cases, integrating more theory axioms simplifies matters.

Inefficient unification procedures may be replaced by constraints.

121



5 Implementation Issues

Problem:

Refutational completeness is nice in theory, but . . .

. . . it guarantees only that proofs will be found eventually, not that they will be found
quickly.

Even though orderings and selection functions reduce the number of possible infer-
ences, the search space problem is enormous.

First-order provers “look for a needle in a haystack”: It may be necessary to make
some millions of inferences to find a proof that is only a few dozens of steps long.

Coping with Large Sets of Formulas

Consequently:

• We must deal with large sets of formulas.

• We must use efficient techniques to find formulas that can be used as partners in
an inference.

• We must simplify/eliminate as many formulas as possible.

• We must use efficient techniques to check whether a formula can be simplified/eliminated.

Note:

Often there are several competing implementation techniques.

Design decisions are not independent of each other.

Design decisions are not independent of the particular class of problems we want to
solve. (FOL without equality/FOL with equality/unit equations, size of the signature,
special algebraic properties like AC, etc.)

5.1 The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together with the “given
clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of clauses.

122



Consequently: split the set of clauses into two subsets.

• W = “Worked-off” (or “active”) clauses: Have already been selected as “given
clause”. (So all inferences between these clauses have already been computed.)

• U = “Usable” (or “passive”) clauses: Have not yet been selected as “given clause”.

During each iteration of the main loop:

Select a new given clause C from U ; U := U \ {C}.

Find partner clauses Di from W ; New = Infer({Di | i ∈ I }, C); U = U ∪ New;
W = W ∪ {C}

Additionally:

Try to simplify C using W . (Skip the remainder of the iteration, if C can be elimi-
nated.)

Try to simplify (or even eliminate) clauses from W using C.

Design decision: should one also simplify U using W ?

yes ; “Otter loop”:
Advantage: simplifications of U may be useful to derive the empty clause.

no ; “Discount loop”:
Advantage: clauses in U are really passive; only clauses in W have to be kept in index
data structure. (Hence: can use index data structure for which retrieval is faster, even
if update is slower and space consumption is higher.)

5.2 Term Representations

The obvious data structure for terms: Trees

f(g(x1), f(g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

An alternative: Flatterms

123



f(g(x1), f(g(x1), x2))

f g x1 f g x1 x2

need more memory;
but: better suited for preorder term traversal

and easier memory management.

5.3 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i. e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .

Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the requirements are different
(insertion and deletion are much less important).

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

124



Perfect filtering:

The indexing technique returns exactly those terms satisfying the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all terms satisfying the
query.

Retrieval operations must be followed by an additional check, but the index can often
be implemented more efficiently.

Frequently: All occurrences of variables are treated as different variables.

Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f(g(∗, b), ∗): f.1.g.1.∗
f.1.g.2.b
f.2.∗

Each leaf of the trie contains the set of (pointers to) all terms that contain the respec-
tive path.

Example: Path index for {f(g(d, ∗), c)}

{1}

{1} {1}

f
1 2

g
c

1 2

d ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗)}

125



{1}
{2}

{2} {1} {2} {1}

f
1 2

g
c
∗

1 2

∗ d b ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c)}

{1, 3}
{2}

{2} {1, 3} {2, 3} {1}

f
1 2

g
c
∗

1 2

∗ d b ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b)}

{4}
{1, 3}

{2}

{2, 4}{1, 3} {2, 3}{4} {1}

f
1 2

g b
c
∗

1 2

∗ d b
c
∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b), f(∗, ∗)}

126



{5} {4}
{1, 3}

{2, 5}

{2, 4}{1, 3} {2, 3}{4} {1}

f
1 2

∗ g b
c
∗

1 2

∗ d b
c
∗

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances.

Disadvantages:

Retrieval requires combining intermediate results for subterms.

Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f(g(∗, b), ∗): f.g.∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is represented by the path.

Example: Discrimination tree for {f(g(d, ∗), c)}

{1}

f
g

d

∗

c

127



Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗)}

{1} {2}

f
g

d ∗

∗ b

c ∗

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c)}

{3} {1} {2}

f
g

d ∗

b ∗ b

c c ∗

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b)}

{3} {1} {2} {4}

f
g

d ∗

b ∗ b c

c c ∗ b

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b),
f(∗, ∗)}

128



{5}

{3} {1} {2} {4}

f
g ∗

d ∗
∗

b ∗ b c

c c ∗ b

Advantages:

Each leaf yields one term, hence retrieval does not require intersections of intermediate
results for subterms.

Good for finding generalizations.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed up the search for instances
or unifiable terms.

Backtracking required for retrieval.

Literature

Literature:

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov: Term Indexing, Ch. 26 in Robinson
and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

Christoph Weidenbach: Combining Superposition, Sorts and Splitting, Ch. 27 in Robin-
son and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

6 Many-Sorted First-Order Logic

→Many-Sorted First-order logic

• generalization of first-order logic

• idea is to prohibit ill-defined statements, e.g., cons(3, nil) + 2

• identical proof theory

• sorts denote subsets of the domain

129


