
Theorem 4.35 ≻lpo is a simplification ordering on TΣ(X).

Proof. Show transitivity, subterm property, stability under substitutions, compatibility
with Σ-operations, and irreflexivity, usually by induction on the sum of the term sizes
and case analysis. Details: Baader and Nipkow, page 119/120. 2

Theorem 4.36 If the precedence ≻ is total, then the lexicographic path ordering ≻lpo

is total on ground terms, i. e., for all s, t ∈ TΣ(∅): s ≻lpo t ∨ t ≻lpo s ∨ s = t.

Proof. By induction on |s| + |t| and case analysis. 2

Recapitulation:

Let Σ = (Ω, Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”) on
Ω. The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t

iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

There are several possibilities to compare subterms in (2)(c):

compare list of subterms lexicographically left-to-right (“lexicographic path ordering
(lpo)”, Kamin and Lévy)

compare list of subterms lexicographically right-to-left (or according to some permu-
tation π)

compare multiset of subterms using the multiset extension (“multiset path ordering
(mpo)”, Dershowitz)

to each function symbol f with arity(n) ≥ 1 associate a status ∈ {mul} ∪ { lexπ |
π : {1, . . . , n} → {1, . . . , n} } and compare according to that status (“recursive path
ordering (rpo) with status”)
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The Knuth-Bendix Ordering

Let Σ = (Ω, Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω, let w : Ω ∪ X → R

+
0 be a weight function, such that the following admissibility

conditions are satisfied:

w(x) = w0 ∈ R
+ for all variables x ∈ X; w(c) ≥ w0 for all constants c ∈ Ω.

If w(f) = 0 for some f ∈ Ω with arity(f) = 1, then f � g for all g ∈ Ω.

The weight function w can be extended to terms as follows:

w(t) =
∑

x∈var(t)

w(x) · #(x, t) +
∑

f∈Ω

w(f) · #(f, t).

The Knuth-Bendix ordering ≻kbo on TΣ(X) induced by ≻ and w is defined by: s ≻kbo t

iff

(1) #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

(2) #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) t = x, s = fn(x) for some n ≥ 1, or

(b) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g, or

(c) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm) (≻kbo)lex (t1, . . . , tm).

Theorem 4.37 The Knuth-Bendix ordering induced by ≻ and w is a simplification
ordering on TΣ(X).

Proof. Baader and Nipkow, pages 125–129. 2
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