4.4 Critical Pairs

Showing local confluence (Sketch):

Problem: If $t_1 \leftarrow_E t_0 \rightarrow_E t_2$, does there exist a term s such that $t_1 \rightarrow_E^* s \leftarrow_E^* t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Question:

Are there rewrite rules $l_1 \to r_1$ and $l_2 \to r_2$ such that some subterm l_1/p and l_2 have a common instance $(l_1/p)\sigma_1 = l_2\sigma_2$?

Observation:

If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $(l_1/p)\sigma = l_2\sigma$.

Further observation:

The mgu of l_1/p and l_2 subsumes all unifiers σ of l_1/p and l_2 .

Let $l_i \to r_i$ (i = 1, 2) be two rewrite rules in a TRS R whose variables have been renamed such that $var(l_1) \cap var(l_2) = \emptyset$. (Remember that $var(l_i) \supseteq var(r_i)$.)

Let $p \in pos(l_1)$ be a position such that l_1/p is not a variable and σ is an mgu of l_1/p and l_2 .

Then $r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma)[r_2 \sigma]_n$.

 $\langle r_1 \sigma, (l_1 \sigma) [r_2 \sigma]_p \rangle$ is called a *critical pair* of R.

The critical pair is joinable (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma)[r_2 \sigma]_p$.

Theorem 4.18 ("Critical Pair Theorem") A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof. "only if": obvious, since joinability of a critical pair is a special case of local confluence.

"if": Suppose s rewrites to t_1 and t_2 using rewrite rules $l_i \to r_i \in R$ at positions $p_i \in pos(s)$, where i = 1, 2. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s/p_i = l_i\theta$ and $t_i = s[r_i\theta]_{p_i}$.

We distinguish between two cases: Either p_1 and p_2 are in disjoint subtrees $(p_1 || p_2)$, or one is a prefix of the other (w.o.l.o.g., $p_1 \leq p_2$).

Case 1: $p_1 || p_2$.

Then $s = s[l_1\theta]_{p_1}[l_2\theta]_{p_2}$, and therefore $t_1 = s[r_1\theta]_{p_1}[l_2\theta]_{p_2}$ and $t_2 = s[l_1\theta]_{p_1}[r_2\theta]_{p_2}$.

Let $t_0 = s[r_1\theta]_{p_1}[r_2\theta]_{p_2}$. Then clearly $t_1 \to_R t_0$ using $l_2 \to r_2$ and $t_2 \to_R t_0$ using $l_1 \to r_1$.

Case 2: $p_1 \le p_2$.

Case 2.1: $p_2 = p_1 q_1 q_2$, where l_1/q_1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in l_1 and n times in r_1 (where $m \ge 1$ and $n \ge 0$).

Then $t_1 \to_R^* t_0$ by applying $l_2 \to r_2$ at all positions $p_1 q' q_2$, where q' is a position of x in r_1 .

Conversely, $t_2 \to_R^* t_0$ by applying $l_2 \to r_2$ at all positions p_1qq_2 , where q is a position of x in l_1 different from q_1 , and by applying $l_1 \to r_1$ at p_1 with the substitution θ' , where $\theta' = \theta[x \mapsto (x\theta)[r_2\theta]_{q_2}]$.

Case 2.2: $p_2 = p_1 p$, where p is a non-variable position of l_1 .

Then $s/p_2 = l_2\theta$ and $s/p_2 = (s/p_1)/p = (l_1\theta)/p = (l_1/p)\theta$, so θ is a unifier of l_2 and l_1/p .

Let σ be the mgu of l_2 and l_1/p , then $\theta = \tau \circ \sigma$ and $\langle r_1 \sigma, (l_1 \sigma)[r_2 \sigma]_p \rangle$ is a critical pair.

By assumption, it is joinable, so $r_1 \sigma \to_R^* v \leftarrow_R^* (l_1 \sigma)[r_2 \sigma]_p$.

Consequently, $t_1 = s[r_1\theta]_{p_1} = s[r_1\sigma\tau]_{p_1} \to_R^* s[v\tau]_{p_1}$ and $t_2 = s[r_2\theta]_{p_2} = s[(l_1\theta)[r_2\theta]_p]_{p_1} = s[(l_1\sigma\tau)[r_2\sigma\tau]_p]_{p_1} = s[((l_1\sigma)[r_2\sigma]_p)\tau]_{p_1} \to_R^* s[v\tau]_{p_1}.$

This completes the proof of the Critical Pair Theorem.

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered – except if the overlap is at the root (i. e., $p = \varepsilon$).

Corollary 4.19 A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof. By Newman's Lemma and the Critical Pair Theorem.

Corollary 4.20 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\langle u_1, u_2 \rangle$.

Reduce every u_i to some normal form u_i' . If $u_1' = u_2'$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u_1' \leftarrow_R^* u_1 \leftarrow_R s \rightarrow_R u_2 \rightarrow_R^* u_2'$.

4.5 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions starting from t terminating? Given a finite TRS R, are all R-reductions terminating?

Proposition 4.21 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting problems for TMs to the termination problems for TRSs.

Consequence:

Decidable criteria for termination are not complete.

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules $l \to r \in R$, rather than at infinitely many possible replacement steps $s \to_R s'$.

A binary relation \square over $T_{\Sigma}(X)$ is called *compatible with* Σ -operations, if $s \square s'$ implies $f(t_1, \ldots, s, \ldots, t_n) \square f(t_1, \ldots, s', \ldots, t_n)$ for all $f \in \Omega$ and $s, s', t_i \in T_{\Sigma}(X)$.

Lemma 4.22 The relation \square is compatible with Σ -operations, if and only if $s \square s'$ implies $t[s]_p \square t[s']_p$ for all $s, s', t \in T_{\Sigma}(X)$ and $p \in pos(t)$.

Note: compatible with Σ -operations = compatible with contexts.

A binary relation \square over $T_{\Sigma}(X)$ is called *stable under substitutions*, if $s \square s'$ implies $s\sigma \square s'\sigma$ for all $s, s' \in T_{\Sigma}(X)$ and substitutions σ .

A binary relation \square is called a rewrite relation, if it is compatible with Σ -operations and stable under substitutions.

Example: If R is a TRS, then \rightarrow_R is a rewrite relation.

A strict partial ordering over $T_{\Sigma}(X)$ that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Theorem 4.23 A TRS R terminates if and only if there exists a reduction ordering \succ such that $l \succ r$ for every rule $l \rightarrow r \in R$.

Proof. "if": $s \to_R s'$ if and only if $s = t[l\sigma]_p$, $s' = t[r\sigma]_p$. If $l \succ r$, then $l\sigma \succ r\sigma$ and therefore $t[l\sigma]_p \succ t[r\sigma]_p$. This implies $\to_R \subseteq \succ$. Since \succ is a well-founded ordering, \to_R is terminating.

"only if": Define $\succ = \rightarrow_R^+$. If \rightarrow_R is terminating, then \succ is a reduction ordering.

The Interpretation Method

Proving termination by interpretation:

Let \mathcal{A} be a Σ -algebra; let \succ be a well-founded strict partial ordering on its universe.

Define the ordering $\succ_{\mathcal{A}}$ over $T_{\Sigma}(X)$ by $s \succ_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(t)$ for all assignments $\beta: X \to U_{\mathcal{A}}$.

Is $\succ_{\mathcal{A}}$ a reduction ordering?

Lemma 4.24 $\succ_{\mathcal{A}}$ is stable under substitutions.

Proof. Let $s \succ_{\mathcal{A}} s'$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s')$ for all assignments $\beta : X \to U_{\mathcal{A}}$. Let σ be a substitution. We have to show that $\mathcal{A}(\gamma)(s\sigma) \succ \mathcal{A}(\gamma)(s'\sigma)$ for all assignments $\gamma : X \to U_{\mathcal{A}}$. Choose $\beta = \gamma \circ \sigma$, then by the substitution lemma, $\mathcal{A}(\gamma)(s\sigma) = \mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s') = \mathcal{A}(\gamma)(s'\sigma)$. Therefore $s\sigma \succ_{\mathcal{A}} s'\sigma$.

A function $F: U_A^n \to U_A$ is called monotone (with respect to \succ), if $a \succ a'$ implies $F(b_1, \ldots, a, \ldots, b_n) \succ F(b_1, \ldots, a', \ldots, b_n)$ for all $a, a', b_i \in U_A$.

Lemma 4.25 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w. r. t. \succ , then $\succ_{\mathcal{A}}$ is compatible with Σ -operations.

Proof. Let $s \succ s'$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s')$ for all $\beta : X \to U_{\mathcal{A}}$. Let $\beta : X \to U_{\mathcal{A}}$ be an arbitrary assignment. Then

$$\mathcal{A}(\beta)(f(t_1,\ldots,s,\ldots,t_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1),\ldots,\mathcal{A}(\beta)(s),\ldots,\mathcal{A}(\beta)(t_n))$$

$$\succ f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1),\ldots,\mathcal{A}(\beta)(s'),\ldots,\mathcal{A}(\beta)(t_n))$$

$$= \mathcal{A}(\beta)(f(t_1,\ldots,s',\ldots,t_n))$$

Therefore $f(t_1, \ldots, s, \ldots, t_n) \succ_{\mathcal{A}} f(t_1, \ldots, s', \ldots, t_n)$.

Theorem 4.26 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w. r. t. \succ , then $\succ_{\mathcal{A}}$ is a reduction ordering.

Proof. By the previous two lemmas, $\succ_{\mathcal{A}}$ is a rewrite relation. If there were an infinite chain $s_1 \succ_{\mathcal{A}} s_2 \succ_{\mathcal{A}} \ldots$, then it would correspond to an infinite chain $\mathcal{A}(\beta)(s_1) \succ \mathcal{A}(\beta)(s_2) \succ \ldots$ (with β chosen arbitrarily). Thus $\succ_{\mathcal{A}}$ is well-founded. Irreflexivity and transitivity are proved similarly.

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set $U_{\mathcal{A}}$ is some subset of the natural numbers.

To every function symbol f with arity n we associate a polynomial $P_f(X_1, \ldots, X_n) \in \mathbb{N}[X_1, \ldots, X_n]$ with coefficients in \mathbb{N} and indeterminates X_1, \ldots, X_n . Then we define $f_{\mathcal{A}}(a_1, \ldots, a_n) = P_f(a_1, \ldots, a_n)$ for $a_i \in U_{\mathcal{A}}$.

Requirement 1:

If $a_1, \ldots, a_n \in U_A$, then $f_A(a_1, \ldots, a_n) \in U_A$. (Otherwise, A would not be a Σ -algebra.)

Requirement 2:

 $f_{\mathcal{A}}$ must be monotone (w. r. t. \succ).

From now on:

$$U_{\mathcal{A}} = \{ n \in \mathbb{N} \mid n \ge 2 \}.$$

If $\operatorname{arity}(f) = 0$, then P_f is a constant ≥ 2 .

If $\operatorname{\sf arity}(f) = n \geq 1$, then P_f is a polynomial $P(X_1, \ldots, X_n)$, such that every X_i occurs in some monomial with exponent at least 1 and non-zero coefficient.

 \Rightarrow Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to terms: A term t containing the variables x_1, \ldots, x_n yields a polynomial P_t with indeterminates X_1, \ldots, X_n (where X_i corresponds to $\beta(x_i)$).

Example:

$$\Omega = \{b, f, g\} \text{ with arity}(b) = 0, \text{ arity}(f) = 1, \text{ arity}(g) = 3, \\ U_{\mathcal{A}} = \{n \in \mathbb{N} \mid n \geq 2\}, \\ P_b = 3, \quad P_f(X_1) = X_1^2, \quad P_g(X_1, X_2, X_3) = X_1 + X_2 X_3. \\ \text{Let } t = q(f(b), f(x), y), \text{ then } P_t(X, Y) = 9 + X^2 Y.$$

If P, Q are polynomials in $\mathbb{N}[X_1, \dots, X_n]$, we write P > Q if $P(a_1, \dots, a_n) > Q(a_1, \dots, a_n)$ for all $a_1, \dots, a_n \in U_A$.

Clearly, $l \succ_{\mathcal{A}} r$ iff $P_l > P_r$.

Question: Can we check $P_l > P_r$ automatically?

Hilbert's 10th Problem:

Given a polynomial $P \in \mathbb{Z}[X_1, \dots, X_n]$ with integer coefficients, is P = 0 for some n-tuple of natural numbers?

Theorem 4.27 Hilbert's 10th Problem is undecidable.

Proposition 4.28 Given a polynomial interpretation and two terms l, r, it is undecidable whether $P_l > P_r$.

Proof. By reduction of Hilbert's 10th Problem.

One possible solution:

Test whether
$$P_l(a_1, \ldots, a_n) > P_r(a_1, \ldots, a_n)$$
 for all $a_1, \ldots, a_n \in \{x \in \mathbb{R} \mid x \geq 2\}$.

This is decidable (but very slow). Since $U_A \subseteq \{x \in \mathbb{R} \mid x \geq 2\}$, it implies $P_l > P_r$.

Another solution (Ben Cherifa and Lescanne):

Consider the difference $P_l(X_1, \ldots, X_n) - P_r(X_1, \ldots, X_n)$ as a polynomial with real coefficients and apply the following inference system to it to show that it is positive for all $a_1, \ldots, a_n \in U_A$:

$$P \Rightarrow_{BCL} \top$$
,

if P contains at least one monomial with a positive coefficient and no monomial with a negative coefficient.

$$P + cX_1^{p_1} \cdots X_n^{p_n} - dX_1^{q_1} \cdots X_n^{q_n} \ \Rightarrow_{BCL} \ P + c'X_1^{p_1} \dots X_n^{p_n},$$

if c, d > 0, $p_i \ge q_i$ for all i, and $c' = c - d \cdot 2^{(q_1 - p_1) + \dots + (q_n - p_n)} \ge 0$.

$$P + cX_1^{p_1} \cdots X_n^{p_n} - dX_1^{q_1} \cdots X_n^{q_n} \Rightarrow_{BCL} P - d'X_1^{q_1} \dots X_n^{q_n},$$

if c, d > 0, $p_i \ge q_i$ for all i, and $d' = d - c \cdot 2^{(p_1 - q_1) + \dots + (p_n - q_n)} > 0$.

Lemma 4.29 If $P \Rightarrow_{BCL} P'$, then $P(a_1, \ldots, a_n) \geq P'(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in U_A$.

Proof. Follows from the fact that $a_i \in U_A$ implies $a_i \geq 2$.

Proposition 4.30 If $P \Rightarrow_{BCL}^+ \top$, then $P(a_1, \ldots, a_n) > 0$ for all $a_1, \ldots, a_n \in U_A$.

Simplification Orderings

The proper subterm ordering \triangleright is defined by $s \triangleright t$ if and only if s/p = t for some position $p \neq \varepsilon$ of s.

A rewrite ordering \succ over $T_{\Sigma}(X)$ is called *simplification ordering*, if it has the *subterm* property: $s \triangleright t$ implies $s \succ t$ for all $s, t \in T_{\Sigma}(X)$.

Example:

Let R_{emb} be the rewrite system $R_{\text{emb}} = \{ f(x_1, \dots, x_n) \to x_i \mid f \in \Omega, 1 \leq i \leq n = \text{arity}(f) \}.$

Define $\triangleright_{\text{emb}} = \rightarrow_{R_{\text{emb}}}^+$ and $\trianglerighteq_{\text{emb}} = \rightarrow_{R_{\text{emb}}}^*$ ("homeomorphic embedding relation").

 $\triangleright_{\text{emb}}$ is a simplification ordering.

Lemma 4.31 If \succ is a simplification ordering, then $s \rhd_{\text{emb}} t$ implies $s \succ t$ and $s \unrhd_{\text{emb}} t$ implies $s \succeq t$.

Proof. Since \succ is transitive and \succeq is transitive and reflexive, it suffices to show that $s \to_{R_{\rm emb}} t$ implies $s \succ t$. By definition, $s \to_{R_{\rm emb}} t$ if and only if $s = s[l\sigma]$ and $t = s[r\sigma]$ for some rule $l \to r \in R_{\rm emb}$. Obviously, $l \rhd r$ for all rules in $R_{\rm emb}$, hence $l \succ r$. Since \succ is a rewrite relation, $s = s[l\sigma] \succ s[r\sigma] = t$.

Goal:

Show that every simplification ordering is well-founded (and therefore a reduction ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification orderings and the definition of embedding have to be modified.

Theorem 4.32 ("Kruskal's Theorem") Let Σ be a finite signature, let X be a finite set of variables. Then for every infinite sequence t_1, t_2, t_3, \ldots there are indices j > i such that $t_j \trianglerighteq_{\text{emb}} t_i$. ($\trianglerighteq_{\text{emb}}$ is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, page 113–115.

Theorem 4.33 (Dershowitz) If Σ is a finite signature, then every simplification ordering \succ on $T_{\Sigma}(X)$ is well-founded (and therefore a reduction ordering).

Proof. Suppose that $t_1 \succ t_2 \succ t_3 \succ \dots$ is an infinite descending chain.

First assume that there is an $x \in \text{var}(t_{i+1}) \setminus \text{var}(t_i)$. Let $\sigma = [t_i/x]$, then $t_{i+1}\sigma \geq x\sigma = t_i$ and therefore $t_i = t_i\sigma \succ t_{i+1}\sigma \succeq t_i$, contradicting reflexivity.

Consequently, $\operatorname{var}(t_i) \supseteq \operatorname{var}(t_{i+1})$ and $t_i \in \operatorname{T}_{\Sigma}(V)$ for all i, where V is the finite set $\operatorname{var}(t_1)$. By Kruskal's Theorem, there are i < j with $t_i \subseteq_{\operatorname{emb}} t_j$. Hence $t_i \subseteq t_j$, contradicting $t_i \succ t_j$.

There are reduction orderings that are not simplification orderings and terminating TRSs that are not contained in any simplification ordering.

Example:

Let
$$R = \{ f(f(x)) \to f(g(f(x))) \}.$$

R terminates and \rightarrow_R^+ is therefore a reduction ordering.

Assume that \to_R were contained in a simplification ordering \succ . Then $f(f(x)) \to_R$ f(g(f(x))) implies $f(f(x)) \succ f(g(f(x)))$, and $f(g(f(x))) \trianglerighteq_{\text{emb}} f(f(x))$ implies $f(g(f(x))) \succeq_{\text{emb}} f(f(x))$ implies $f(g(f(x))) \succeq_{\text{emb}} f(f(x))$.

Recursive Path Orderings

Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω

The lexicographic path ordering \succ_{lpo} on $T_{\Sigma}(X)$ induced by \succ is defined by: $s \succ_{\text{lpo}} t$ iff

- (1) $t \in var(s)$ and $t \neq s$, or
- (2) $s = f(s_1, \ldots, s_m), t = g(t_1, \ldots, t_n), \text{ and }$
 - (a) $s_i \succeq_{\text{lpo}} t$ for some i, or
 - (b) $f \succ g$ and $s \succ_{\text{lpo}} t_i$ for all j, or
 - (c) f = g, $s \succ_{\text{lpo}} t_j$ for all j, and $(s_1, \ldots, s_m) (\succ_{\text{lpo}})_{\text{lex}} (t_1, \ldots, t_n)$.

Lemma 4.34 $s \succ_{\text{lpo}} t \text{ implies } \text{var}(s) \supseteq \text{var}(t).$

Proof. By induction on |s| + |t| and case analysis.