Lemma 4.4 If \rightarrow is confluent, then every element has at most one normal form.

Proof. Suppose that some element $a \in A$ has normal forms b and c, then $b \leftarrow^* a \rightarrow^* c$. If \rightarrow is confluent, then $b \rightarrow^* d \leftarrow^* c$ for some $d \in A$. Since b and c are normal forms, both derivations must be empty, hence $b \rightarrow^0 d \leftarrow^0 c$, so b, c, and d must be identical.

Corollary 4.5 If \rightarrow is normalizing and confluent, then every element *b* has a unique normal form.

Proposition 4.6 If \rightarrow is normalizing and confluent, then $b \leftrightarrow^* c$ if and only if $b \downarrow = c \downarrow$.

Proof. Either using Thm. 4.3 or directly by induction on the length of the derivation of $b \leftrightarrow^* c$.

Well-Founded Orderings

Lemma 4.7 If \rightarrow is a terminating binary relation over A, then \rightarrow^+ is a well-founded partial ordering.

Proof. Transitivity of \rightarrow^+ is obvious; irreflexivity and well-foundedness follow from termination of \rightarrow .

Lemma 4.8 If > is a well-founded partial ordering and $\rightarrow \subseteq >$, then \rightarrow is terminating.

Proving Confluence

Theorem 4.9 ("Newman's Lemma") If a terminating relation \rightarrow is locally confluent, then it is confluent.

Proof. Let \rightarrow be a terminating and locally confluent relation. Then \rightarrow^+ is a well-founded ordering. Define $P(a) \Leftrightarrow (\forall b, c : b \leftarrow^* a \rightarrow^* c \Rightarrow b \downarrow c)$.

We prove P(a) for all $a \in A$ by well-founded induction over \rightarrow^+ :

Case 1: $b \leftarrow^0 a \rightarrow^* c$: trivial.

Case 2: $b \leftarrow^* a \rightarrow^0 c$: trivial.

Case 3: $b \leftarrow^* x' \leftarrow a \rightarrow y' \rightarrow^* c$: use local confluence, then use the induction hypothesis.

Proving Termination: Monotone Mappings

Let $(A, >_A)$ and $(B, >_B)$ be partial orderings. A mapping $\varphi : A \to B$ is called monotone, if $a >_A a'$ implies $\varphi(a) >_B \varphi(a')$ for all $a, a' \in A$.

Lemma 4.10 If $\varphi : A \to B$ is a monotone mapping from $(A, >_A)$ to $(B, >_B)$ and $(B, >_B)$ is well-founded, then $(A, >_A)$ is well-founded.

4.3 Rewrite Systems

Let E be a set of equations.

The rewrite relation $\rightarrow_E \subseteq T_{\Sigma}(X) \times T_{\Sigma}(X)$ is defined by

 $s \to_E t$ iff there exist $(l \approx r) \in E, p \in \text{pos}(s),$ and $\sigma : X \to T_{\Sigma}(X),$ such that $s/p = l\sigma$ and $t = s[r\sigma]_p.$

An instance of the lhs (left-hand side) of an equation is called a *redex* (reducible expression). *Contracting* a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

An equation $l \approx r$ is also called a *rewrite rule*, if l is not a variable and $var(l) \supseteq var(r)$.

Notation: $l \rightarrow r$.

A set of rewrite rules is called a *term rewrite system (TRS)*.

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

E-Algebras

Let *E* be a set of closed equations. A Σ -algebra \mathcal{A} is called an *E*-algebra, if $\mathcal{A} \models \forall \vec{x} (s \approx t)$ for all $\forall \vec{x} (s \approx t) \in E$.

If $E \models \forall \vec{x}(s \approx t)$ (i.e., $\forall \vec{x}(s \approx t)$ is valid in all *E*-algebras), we write this also as $s \approx_E t$.

Goal:

Use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically:

 $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$.