The Superposition Calculus — Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules:

D'Vttt C'V s[u| = ¢
(D'Vv C'V st =)o
where 0 = mgu(¢, u) and

u is not a variable.

Pos. Superposition:

D'vt~t C'V s[u] % ¢
(D'Vv C'"V s[t'] # 8o
where 0 = mgu(¢, u) and

u is not a variable.

Neg. Superposition:

C'Vsas
C'o

where o = mgu(s,).

Equality Resolution:

C'Vvs=tvsat
(C'Vtt Vsx~t)o
where o = mgu(s,).

Equality Factoring:

Theorem 3.44 All inference rules of the superposition calculus are correct, i.e., for
every rule

C......C
Co
we have {C4,...,C,} | Cy.

Proof. Exercise. O

119

Orderings:
Let > be a reduction ordering that is total on ground terms.

To a positive literal s ~ ¢, we assign the multiset {s,¢}, to a negative literal s % t
the multiset {s,s,t,t}. The literal ordering > compares these multisets using the
multiset extension of .

The clause ordering > compares clauses by comparing their multisets of literals using
the multiset extension of =,.

Inferences have to be computed only if the following ordering restrictions are satisfied:

— In superposition inferences, after applying the unifier to both premises, the left
premise is not greater than or equal to the right one.

— The last literal in each premise is maximal in the respective premise, i.e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i.e., there exists no greater or equal literal).

— In these literals, the lhs is not smaller than the rhs (in superposition inferences:
neither smaller nor equal).

A ground clause C' is called redundant w.r.t. a set of ground clauses N, if it follows
from clauses in IV that are smaller than C.

A clause is redundant w.r. t. a set of clauses N, if all its ground instances are redundant

The set of all clauses that are redundant w.r.t. N is denoted by Red(N).

N is called saturated up to redundancy, if the conclusion of every inference from clauses

in N\ Red(N) is contained in N U Red(N).

Superposition: Refutational Completeness
For a set E of ground equations, Tx(())/F is an E-interpretation (or E-algebra) with
universe { [t] | t € Tx(0) }.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ~t we have Tx()/F | s &~ t if and only if s <% t.

In particular, if F is a convergent set of rewrite rules R and s ~ t is a ground equation,
then Tx(0)/R = s =~ ¢ if and only if s | t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in Tx(0)/R.

120

Construction of candidate interpretations (Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing L. Using induction on the clause ordering we
define sets of rewrite rules ¢ and R¢ for all C € Gx(N) as follows:

Assume that Ep has already been defined for all D € Gg(N) with D <o C. Then
RC = UD<cC E

The set E- contains the rewrite rule s — ¢, if

(a

(b) s &t is strictly maximal in C.

d) C is false in Rc.
e) C'is false in Ro U {s — t}.

)

)
(c) s>t
(d)
(e)
(f) s is irreducible w.r.t. Re.

In this case, C' is called productive. Otherwise Ex = (.
Finally, Ry, = UDGGE(N) Ep.

Lemma 3.45 If Ec = {s — t} and Ep = {u — v}, then s = u if and only if C =¢ D
Corollary 3.46 The rewrite systems Rq and R, are convergent.

Proof. Obviously, s > t for all rules s — ¢ in R and R,

Furthermore, it is easy to check that there are no critical pairs between any two rules:
Assume that there are rules u — v in Ep and s — t in E¢ such that u is a subterm
of s. As > is a reduction ordering that is total on ground terms, we get u < s and
therefore D <o C and Ep C Re. But then s would be reducible by R¢, contradicting
condition (f). O

Lemma 3.47 If D < C and E¢ = {s — t}, then s > u for every term u occurring in
a negative literal in D and s = v for every term v occurring in a positive literal in D.

Corollary 3.48 If D € Gx(N) is true in Rp, then D is true in R, and R for all
Cs>cD

Proof. If a positive literal of D is true in Rp, then this is obvious.

Otherwise, some negative literal s % ¢ of D must be true in Rp, hence s [, t. As the
rules in R, \ Rp have left-hand sides that are larger than s and ¢, they cannot be used
in a rewrite proof of s | ¢, hence s /. t and s [r__ t. O

121

Corollary 3.49 If D = D’V u = v is productive, then D' is false and D is true in R,
and Rq for all C ¢ D.

Proof. Obviously, D is true in R, and R¢ for all C' »=¢ D.

Since all negative literals of D’ are false in Rp, it is clear that they are false in R, and
Rc. For the positive literals u’ &~ v' of D’, condition (e) ensures that they are false in
Rp U {u — v}. Since v’ < w and v" < u and all rules in R, \ Rp have left-hand sides
that are larger than u, these rules cannot be used in a rewrite proof of v’ | v’, hence
u fro v and v’ fr, V. a

Lemma 3.50 (“Lifting Lemma”) Let C be a clause and let § be a substitution such
that C0 is ground. Then every equality resolution or equality factoring inference from
C#0 is a ground instance of an inference from C.

Proof. Exercise. O

Lemma 3.51 (“Lifting Lemma”) Let D = D'Vu ~ v and C = C"V [-] s = t be
two clauses (without common variables) and let be a substitution such that D6 and
C0 are ground.

If there is a superposition inference between D and C6 where ufl and some subterm of
sf are overlapped, and uf) does not occur in s6 at or below a variable position of s, then
the inference is a ground instance of a superposition inference from D and C'.

Proof. Exercise. O

Theorem 3.52 (“Model Construction”) Let N be a set of clauses that is saturated
up to redundancy and does not contain the empty clause. Then we have for every ground

clause C8 € Gx(N):

(i) Ecy = 0 if and only if CO is true in Rcy.

(ii) If C9 is redundant w.r.t. Gx(N), then it is true in Reg.

(iii) C8 is true in R and in Rp for every D € Gx(N) with D >¢ C6.

Proof. We use induction on the clause ordering > and assume that (i)—(iii) are already
satisfied for all clauses in Gy (N) that are smaller than C. Note that the “if” part of
(i) is obvious from the construction and that condition (iii) follows immediately from (i)
and Corollaries 3.50 and 3.51. So it remains to show (ii) and the “only if” part of (i).

122

Case 1: C is redundant w.r.t. Gx(N).

If C0 is redundant w.r.t. Gx(NV), then if follows from clauses in Gx (V) that are smaller
than C'0. By part (iii) of the induction hypothesis, these clauses are true in Rgy. Hence
(0 is true in Rcyp.

Case 2: x is reducible by Rcy.

Suppose there is a variable x occurring in C' such that x6 is reducible by R¢g, say
2 —p., w. Let the substitution ¢ be defined by 26" = w and y8' = yé for every
variable y # x. The clause C¢ is smaller than C6. By part (iii) of the induction
hypothesis, it is true in Rgy. By congruence, every literal of €6 is true in Rgy if and
only if the corresponding literal of C8’ is true in R¢y; hence C0 is true in Rey.

Case 3: C0 contains a maximal negative literal.

Suppose that C# does not fall into Case 1 or 2 and that C0 = C'0 Vv s6 % s'0, where
sf % s'0 is maximal in C6. If s ~ s'0 is false in Rgy, then C0 is clearly true in Rgy
and we are done. So assume that s ~ s'0 is true in R¢y, that is, s6 | g, s'0. Without
loss of generality, sf = s'6.

Case 3.1: s = §'0.

If s6 = §'0, then there is an equality resolution inference

C'0 v s0 % s'0
c'o '

As shown in the Lifting Lemma, this is an instance of an equality resolution inference

C' Vv s#s
C'o

where C' = C" V s % s is contained in N and 6 = po o. (Without loss of generality,
o is idempotent, therefore C'0 = C'op = C'oop = C'of, so C'0 is a ground instance of
(’c.) Since C is not redundant w.r.t. Gy(NV), C is not redundant w.r.t. N. As N is
saturated up to redundancy, the conclusion C’o of the inference from C' is contained in
N U Red(N). Therefore, C'8 is either contained in Gy (V) and smaller than C#, or it
follows from clauses in Gx(N) that are smaller than itself (and therefore smaller than
C0). By the induction hypothesis, clauses in Gx(N) that are smaller than C0 are true
in Ry, thus C’'0 and C6 are true in Rcg.

123

Case 3.2: s — §'6.

If s6 | ., s'0 and s6 > s'6, then sf must be reducible by some rule in some Epy C Rey.
(Without loss of generality we assume that C' and D are variable disjoint; so we can use
the same substitution 0.) Let DO = D'0 Vv t0 ~ t'0 with Epy = {t0 — t'8}. Since DO
is productive, D' is false in Rgy. Besides, by part (ii) of the induction hypothesis, D@
is not redundant w.r.t. Gg(NV), so D is not redundant w.r.t. N. Note that tf cannot
occur in s6 at or below a variable position of s, say 6 = w]tf], since otherwise C'0 would
be subject to Case 2 above. Consequently, the left superposition inference

DOV th~t) C0 Vv sOftd) # 50
DO vV C'0 v sO[t'd] 7 s'0

is a ground instance of a left superposition inference from D and C'. By saturation up to
redundancy, its conclusion is either contained in G, (V) and smaller than C8, or it follows
from clauses in Gy (N) that are smaller than itself (and therefore smaller than C6). By
the induction hypothesis, these clauses are true in Rgy, thus D' vV C'0 vV s0[t'0] % s'0

is true in Rgg. Since D0 and sO[t'6] # s'0 are false in Reg, both C'0 and Cf must be
true.

Case 4: C'0 does not contain a maximal negative literal.

Suppose that Cf does not fall into Cases 1 to 3. Then C# can be written as C'0 V s6 ~
s'60, where s ~ s'6 is a maximal literal of C0. If Ecy = {s0 — s'0} or C'f is true in
Rep or sf = s'6, then there is nothing to show, so assume that Fgy = () and that €6 is
false in Rcg. Without loss of generality, s > s'6.

Case 4.1: s ~ §'0 is maximal in C@, but not strictly maximal.

If s =~ s'6 is maximal in C#, but not strictly maximal, then C'f can be written as
C"0 Vv t0 =~t'0 Vv sO =~ s'0, where td = s and t'0 = s'6. In this case, there is a equality
factoring inference

C"§ v th =~t'0 VvV s ~s'0
C"0 v t0 % s'0 Vv th =~ 10

This inference is a ground instance of an inference from C'. By saturation, its conclusion
is true in Rey. Trivially, ¢'8 = s'6 implies t'8 | ., s'0, so t'60 % s'6 must be false and C6
must be true in Rgy.

Case 4.2: s = s'0 is strictly maximal in C6 and s is reducible.
Suppose that s ~ §'0 is strictly maximal in C8 and sf is reducible by some rule in

Eps € Rey. Let DO = D'0 Vv t0 ~ t'0 and Epg = {t0 — t'0}. Since DB is productive,
DO is not redundant and D'0 is false in Rgy. We can now proceed in essentially the

124

same way as in Case 3.2: If t0 occurred in sf at or below a variable position of s, say
x6 = w[th], then CH would be subject to Case 2 above. Otherwise, the right superposition
inference

DOV 0 COV sO[th] ~ 50
DO vV C'0 v sO[t'f] ~ s'0

is a ground instance of a right superposition inference from D and C. By saturation
up to redundancy, its conclusion is true in Rgy. Since D'6 and C'6 are false in Ry,
sO[t'0] =~ s'0 must be true in Rgg. On the other hand, t0 ~ ¢’ is true in R¢y, so by
congruence, sf[tf] ~ s'0 and C are true in Rgy.

Case 4.3: s =~ §'0 is strictly maximal in C'0 and s is irreducible.

Suppose that s ~ s'6 is strictly maximal in C'f and s@ is irreducible by Rgy. Then there
are three possibilities: C can be true in Ry, or C'0 can be true in Reg U {s0 — s'0},
or Ecg = {s0 — s'0}. In the first and the third case, there is nothing to show. Let us
therefore assume that C0 is false in Rep and C'6 is true in Reg U {s# — s'0}. Then
C'0 = C"0 v tO ~ t'0, where the literal t0 ~ t'0 is true in Rcp U {s6 — s'0} and
false in Rey. In other words, 0 | g ,urs0—s0y U0, but not t0 | g, t'0. Consequently,
there is a rewrite proof of t6 —* u «* t'0 by Rep U {s — s'0} in which the rule
s — s'0 is used at least once. Without loss of generality we assume that t6 > ¢'6. Since
s ~ s'0 =, t0 ~ t'0 and s0 = s'0 we can conclude that s@ = t0 = ¢'6. But then there
is only one possibility how the rule s — 5’6 can be used in the rewrite proof: We must
have sf = tf and the rewrite proof must have the form t0 — s’ —* u <* 6, where the
first step uses s# — s’6 and all other steps use rules from Rgy. Consequently, s'6 ~ t'6
is true in Rcy. Now observe that there is an equality factoring inference

C"§ v th =~t'0 VvV s ~s'0
C"0 v t0 % s'0 Vv th =~ 10

whose conclusion is true in Rgy by saturation. Since the literal ¢'6 % s’6 must be false
in Rgg, the rest of the clause must be true in Rgy, and therefore C'O must be true in
Rey, contradicting our assumption. This concludes the proof of the theorem. O

A Y-interpretation A is called term-generated, if for every b € U 4 there is a ground term

t € Tx(0) such that b = A(B)(¢).

Lemma 3.53 Let N be a set of (universally quantified) ¥-clauses and let A be a term-
generated Y.-interpretation. Then A is a model of Gy (N) if and only if it is a model
of N.

125

Proof. (=): Let A = Gx(N); let (VZC) € N. Then A | VZC iff A(y[x; — a])(C) =1
for all v and a;. Choose ground terms ¢; such that A(v)(t;) = a;; define 6 such that
x;0 = t;, then A(v[z; — @;])(C) = A(y00)(C) = A(7)(CH) = 1 since CH € Gx(N).

(<): Let A be a model of N; let C € N and C6 € Gg(N). Then A(y)(CH) =
A(y00)(C) =1since A= N. O

Theorem 3.54 (Refutational Completeness: Static View) Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if N
does not contain the empty clause.

Proof. If L € N, then obviously N does not have a model. If 1. ¢ N, then the interpre-
tation R, (that is, Tx(0))/Rs) is a model of all ground instances in G (N) according

to part (iii) of the model construction theorem. As Tx(0)/ Ry is term generated, it is a
model of N. O

So far, we have considered only inference rules that add new clauses to the current set
of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form Ny Ny = Ny ..., where each N, 4 is
obtained from N; by adding the consequence of some inference from clauses in N;.

Under which circumstances are we allowed to delete (or simplify) a clause during the
derivation?

A run of the superposition calculus is a sequence Ny = Ny = Ny ..., such that
(1) Nz): Ni+17 and
(ii) all clauses in N; \ N;y; are redundant w.r.t. V; ;.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w.r.t. the remaining ones.

For a run, Noo = ;5o Ni and Ny = [J;50(;5; N;. The set N, of all persistent clauses is
called the limit of the run. -

Lemma 3.55 If N C N’, then Red(N) C Red(N').

Proof. Obvious. 0

Lemma 3.56 If N’ C Red(N), then Red(N) C Red(N \ N’).

Proof. Follows from the compactness of first-order logic and the well-foundedness of
the multiset extension of the clause ordering. O

126

Lemma 3.57 Let Ny F Ny = Ny & ... be a run. Then Red(N;) C Red(N.,) and
Red(N;) C Red(N,) for every 1.

Proof. Exercise. O
Corollary 3.58 N; C N, U Red(N,) for every 1.

Proof. If C' € N; \ N,, then there is a k > i such that C' € Ny \ Ngi1, so C must be
redundant w.r.t. Ni,;. Consequently, C' is redundant w.r.t. N,. O

A run is called fair, if the conclusion of every inference from clauses in N, \ Red(NV,) is
contained in some N; U Red(NV;).

Lemma 3.59 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N, is contained in some N; U Red(N;), and therefore contained in N, U
Red(N,). Hence N, is saturated up to redundancy. O

Theorem 3.60 (Refutational Completeness: Dynamic View) Let No+ N; F Ny -
... be a fair run, let N, be its limit. Then Ny has a model if and only if 1 ¢ N,.

Proof. («<): By fairness, N, is saturated up to redundancy. If L ¢ N,, then it has
a term-generated model. Since every clause in Ny is contained in N, or redundant
w.1.t. N, this model is also a model of Gx(Ny) and therefore a model of Nj.

(=): Obvious, since Ny = N.. =

Superposition: Extensions

Extensions and improvements:
simplification techniques,
selection functions (as for ordered resolution),
redundancy for inferences,
basic strategies,

constraint reasoning.

127

Theory Reasoning

Superposition vs. resolution + equality axioms:
specialized inference rules, thus no inferences with theory axioms,
computation modulo symmetry,
stronger ordering restrictions,
no variable overlaps,
stronger redundancy criterion.

Similar techniques can be used for other theories:
transitive relations,
dense total orderings without endpoints,
commutativity,
associativity and commutativity,
abelian monoids,
abelian groups,
divisible torsion-free abelian groups.

Observations:

no inferences with theory axioms:
yes, usually possible.

computation modulo theory axioms:
often possible, but requires unification and orderings modulo theory.

stronger ordering restrictions, no variable overlaps:
sometimes possible, but in many cases, certain variable overlaps remain necessary.

stronger redundancy criterion:
depends on the model construction.

In many cases, integrating more theory axioms simplifies matters.

Inefficient unification procedures may be replaced by constraints.

128

