
The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Theorem 3.44 All inference rules of the superposition calculus are correct, i. e., for
every rule

Cn, . . . , C1

C0

we have {C1, . . . , Cn} |= C0.

Proof. Exercise. 2
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Orderings:

Let � be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering �L compares these multisets using the
multiset extension of �.

The clause ordering �C compares clauses by comparing their multisets of literals using
the multiset extension of �L.

Inferences have to be computed only if the following ordering restrictions are satisfied:

– In superposition inferences, after applying the unifier to both premises, the left
premise is not greater than or equal to the right one.

– The last literal in each premise is maximal in the respective premise, i. e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is not smaller than the rhs (in superposition inferences:
neither smaller nor equal).

A ground clause C is called redundant w. r. t. a set of ground clauses N , if it follows
from clauses in N that are smaller than C.

A clause is redundant w. r. t. a set of clauses N , if all its ground instances are redundant
w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by Red(N).

N is called saturated up to redundancy, if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-algebra) with
universe { [t] | t ∈ TΣ(∅) }.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s↔∗

E t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground equation,
then TΣ(∅)/R |= s ≈ t if and only if s ↓R t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.
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Construction of candidate interpretations (Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing ⊥. Using induction on the clause ordering we
define sets of rewrite rules EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C. Then
RC =

⋃
D≺CC ED.

The set EC contains the rewrite rule s→ t, if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C.

(c) s � t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s→ t}.

(f) s is irreducible w. r. t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N) ED.

Lemma 3.45 If EC = {s→ t} and ED = {u→ v}, then s � u if and only if C �C D.

Corollary 3.46 The rewrite systems RC and R∞ are convergent.

Proof. Obviously, s � t for all rules s→ t in RC and R∞.

Furthermore, it is easy to check that there are no critical pairs between any two rules:
Assume that there are rules u → v in ED and s → t in EC such that u is a subterm
of s. As � is a reduction ordering that is total on ground terms, we get u ≺ s and
therefore D ≺C C and ED ⊆ RC . But then s would be reducible by RC , contradicting
condition (f). 2

Lemma 3.47 If D �C C and EC = {s→ t}, then s � u for every term u occurring in
a negative literal in D and s � v for every term v occurring in a positive literal in D.

Corollary 3.48 If D ∈ GΣ(N) is true in RD, then D is true in R∞ and RC for all
C �C D.

Proof. If a positive literal of D is true in RD, then this is obvious.

Otherwise, some negative literal s 6≈ t of D must be true in RD, hence s 6 ↓RD
t. As the

rules in R∞ \RD have left-hand sides that are larger than s and t, they cannot be used
in a rewrite proof of s ↓ t, hence s 6 ↓RC

t and s 6 ↓R∞
t. 2
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Corollary 3.49 If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in R∞

and RC for all C �C D.

Proof. Obviously, D is true in R∞ and RC for all C �C D.

Since all negative literals of D′ are false in RD, it is clear that they are false in R∞ and
RC . For the positive literals u′ ≈ v′ of D′, condition (e) ensures that they are false in
RD ∪ {u → v}. Since u′ � u and v′ � u and all rules in R∞ \ RD have left-hand sides
that are larger than u, these rules cannot be used in a rewrite proof of u′ ↓ v′, hence
u′ 6 ↓RC

v′ and u′ 6 ↓R∞
v′. 2

Lemma 3.50 (“Lifting Lemma”) Let C be a clause and let θ be a substitution such
that Cθ is ground. Then every equality resolution or equality factoring inference from
Cθ is a ground instance of an inference from C.

Proof. Exercise. 2

Lemma 3.51 (“Lifting Lemma”) Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be
two clauses (without common variables) and let θ be a substitution such that Dθ and
Cθ are ground.

If there is a superposition inference between Dθ and Cθ where uθ and some subterm of
sθ are overlapped, and uθ does not occur in sθ at or below a variable position of s, then
the inference is a ground instance of a superposition inference from D and C.

Proof. Exercise. 2

Theorem 3.52 (“Model Construction”) Let N be a set of clauses that is saturated
up to redundancy and does not contain the empty clause. Then we have for every ground
clause Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w. r. t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with D �C Cθ.

Proof. We use induction on the clause ordering �C and assume that (i)–(iii) are already
satisfied for all clauses in GΣ(N) that are smaller than Cθ. Note that the “if” part of
(i) is obvious from the construction and that condition (iii) follows immediately from (i)
and Corollaries 3.50 and 3.51. So it remains to show (ii) and the “only if” part of (i).
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Case 1: Cθ is redundant w. r. t. GΣ(N).

If Cθ is redundant w. r. t. GΣ(N), then if follows from clauses in GΣ(N) that are smaller
than Cθ. By part (iii) of the induction hypothesis, these clauses are true in RCθ. Hence
Cθ is true in RCθ.

Case 2: xθ is reducible by RCθ.

Suppose there is a variable x occurring in C such that xθ is reducible by RCθ, say
xθ →RCθ

w. Let the substitution θ′ be defined by xθ′ = w and yθ′ = yθ for every
variable y 6= x. The clause Cθ′ is smaller than Cθ. By part (iii) of the induction
hypothesis, it is true in RCθ. By congruence, every literal of Cθ is true in RCθ if and
only if the corresponding literal of Cθ′ is true in RCθ; hence Cθ is true in RCθ.

Case 3: Cθ contains a maximal negative literal.

Suppose that Cθ does not fall into Case 1 or 2 and that Cθ = C ′θ ∨ sθ 6≈ s′θ, where
sθ 6≈ s′θ is maximal in Cθ. If sθ ≈ s′θ is false in RCθ, then Cθ is clearly true in RCθ

and we are done. So assume that sθ ≈ s′θ is true in RCθ, that is, sθ ↓RCθ
s′θ. Without

loss of generality, sθ � s′θ.

Case 3.1: sθ = s′θ.

If sθ = s′θ, then there is an equality resolution inference

C ′θ ∨ sθ 6≈ s′θ

C ′θ
.

As shown in the Lifting Lemma, this is an instance of an equality resolution inference

C ′ ∨ s 6≈ s′

C ′σ

where C = C ′ ∨ s 6≈ s′ is contained in N and θ = ρ ◦ σ. (Without loss of generality,
σ is idempotent, therefore C ′θ = C ′σρ = C ′σσρ = C ′σθ, so C ′θ is a ground instance of
C ′σ.) Since Cθ is not redundant w. r. t. GΣ(N), C is not redundant w. r. t. N . As N is
saturated up to redundancy, the conclusion C ′σ of the inference from C is contained in
N ∪ Red(N). Therefore, C ′θ is either contained in GΣ(N) and smaller than Cθ, or it
follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, clauses in GΣ(N) that are smaller than Cθ are true
in RCθ, thus C ′θ and Cθ are true in RCθ.
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Case 3.2: sθ � s′θ.

If sθ ↓RCθ
s′θ and sθ � s′θ, then sθ must be reducible by some rule in some EDθ ⊆ RCθ.

(Without loss of generality we assume that C and D are variable disjoint; so we can use
the same substitution θ.) Let Dθ = D′θ ∨ tθ ≈ t′θ with EDθ = {tθ → t′θ}. Since Dθ
is productive, D′θ is false in RCθ. Besides, by part (ii) of the induction hypothesis, Dθ
is not redundant w. r. t. GΣ(N), so D is not redundant w. r. t. N . Note that tθ cannot
occur in sθ at or below a variable position of s, say xθ = w[tθ], since otherwise Cθ would
be subject to Case 2 above. Consequently, the left superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] 6≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ

is a ground instance of a left superposition inference from D and C. By saturation up to
redundancy, its conclusion is either contained in GΣ(N) and smaller than Cθ, or it follows
from clauses in GΣ(N) that are smaller than itself (and therefore smaller than Cθ). By
the induction hypothesis, these clauses are true in RCθ, thus D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ
is true in RCθ. Since D′θ and sθ[t′θ] 6≈ s′θ are false in RCθ, both C ′θ and Cθ must be
true.

Case 4: Cθ does not contain a maximal negative literal.

Suppose that Cθ does not fall into Cases 1 to 3. Then Cθ can be written as C ′θ ∨ sθ ≈
s′θ, where sθ ≈ s′θ is a maximal literal of Cθ. If ECθ = {sθ → s′θ} or C ′θ is true in
RCθ or sθ = s′θ, then there is nothing to show, so assume that ECθ = ∅ and that C ′θ is
false in RCθ. Without loss of generality, sθ � s′θ.

Case 4.1: sθ ≈ s′θ is maximal in Cθ, but not strictly maximal.

If sθ ≈ s′θ is maximal in Cθ, but not strictly maximal, then Cθ can be written as
C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this case, there is a equality

factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

This inference is a ground instance of an inference from C. By saturation, its conclusion
is true in RCθ. Trivially, t′θ = s′θ implies t′θ ↓RCθ

s′θ, so t′θ 6≈ s′θ must be false and Cθ
must be true in RCθ.

Case 4.2: sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible by some rule in
EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ → t′θ}. Since Dθ is productive,
Dθ is not redundant and D′θ is false in RCθ. We can now proceed in essentially the
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same way as in Case 3.2: If tθ occurred in sθ at or below a variable position of s, say
xθ = w[tθ], then Cθ would be subject to Case 2 above. Otherwise, the right superposition

inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] ≈ s′θ

is a ground instance of a right superposition inference from D and C. By saturation
up to redundancy, its conclusion is true in RCθ. Since D′θ and C ′θ are false in RCθ,
sθ[t′θ] ≈ s′θ must be true in RCθ. On the other hand, tθ ≈ t′θ is true in RCθ, so by
congruence, sθ[tθ] ≈ s′θ and Cθ are true in RCθ.

Case 4.3: sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible by RCθ. Then there
are three possibilities: Cθ can be true in RCθ, or C ′θ can be true in RCθ ∪ {sθ → s′θ},
or ECθ = {sθ → s′θ}. In the first and the third case, there is nothing to show. Let us
therefore assume that Cθ is false in RCθ and C ′θ is true in RCθ ∪ {sθ → s′θ}. Then
C ′θ = C ′′θ ∨ tθ ≈ t′θ, where the literal tθ ≈ t′θ is true in RCθ ∪ {sθ → s′θ} and
false in RCθ. In other words, tθ ↓RCθ∪{sθ→s′θ} t′θ, but not tθ ↓RCθ

t′θ. Consequently,
there is a rewrite proof of tθ →∗ u ←∗ t′θ by RCθ ∪ {sθ → s′θ} in which the rule
sθ → s′θ is used at least once. Without loss of generality we assume that tθ � t′θ. Since
sθ ≈ s′θ �L tθ ≈ t′θ and sθ � s′θ we can conclude that sθ � tθ � t′θ. But then there
is only one possibility how the rule sθ → s′θ can be used in the rewrite proof: We must
have sθ = tθ and the rewrite proof must have the form tθ → s′θ →∗ u←∗ t′θ, where the
first step uses sθ → s′θ and all other steps use rules from RCθ. Consequently, s′θ ≈ t′θ
is true in RCθ. Now observe that there is an equality factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

whose conclusion is true in RCθ by saturation. Since the literal t′θ 6≈ s′θ must be false
in RCθ, the rest of the clause must be true in RCθ, and therefore Cθ must be true in
RCθ, contradicting our assumption. This concludes the proof of the theorem. 2

A Σ-interpretation A is called term-generated, if for every b ∈ UA there is a ground term
t ∈ TΣ(∅) such that b = A(β)(t).

Lemma 3.53 Let N be a set of (universally quantified) Σ-clauses and let A be a term-
generated Σ-interpretation. Then A is a model of GΣ(N) if and only if it is a model
of N .
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Proof. (⇒): Let A |= GΣ(N); let (∀~xC) ∈ N . Then A |= ∀~xC iff A(γ[xi 7→ ai])(C) = 1
for all γ and ai. Choose ground terms ti such that A(γ)(ti) = ai; define θ such that
xiθ = ti, then A(γ[xi 7→ ai])(C) = A(γ ◦ θ)(C) = A(γ)(Cθ) = 1 since Cθ ∈ GΣ(N).

(⇐): Let A be a model of N ; let C ∈ N and Cθ ∈ GΣ(N). Then A(γ)(Cθ) =
A(γ ◦ θ)(C) = 1 since A |= N . 2

Theorem 3.54 (Refutational Completeness: Static View) Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if N
does not contain the empty clause.

Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ /∈ N , then the interpre-
tation R∞ (that is, TΣ(∅)/R∞) is a model of all ground instances in GΣ(N) according
to part (iii) of the model construction theorem. As TΣ(∅)/R∞ is term generated, it is a
model of N . 2

So far, we have considered only inference rules that add new clauses to the current set
of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form N0 ` N1 ` N2 ` . . . , where each Ni+1 is
obtained from Ni by adding the consequence of some inference from clauses in Ni.

Under which circumstances are we allowed to delete (or simplify) a clause during the
derivation?

A run of the superposition calculus is a sequence N0 ` N1 ` N2 ` . . . , such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w. r. t. the remaining ones.

For a run, N∞ =
⋃

i≥0 Ni and N∗ =
⋃

i≥0

⋂
j≥i Nj. The set N∗ of all persistent clauses is

called the limit of the run.

Lemma 3.55 If N ⊆ N ′, then Red(N) ⊆ Red(N ′).

Proof. Obvious. 2

Lemma 3.56 If N ′ ⊆ Red(N), then Red(N) ⊆ Red(N \N ′).

Proof. Follows from the compactness of first-order logic and the well-foundedness of
the multiset extension of the clause ordering. 2
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Lemma 3.57 Let N0 ` N1 ` N2 ` . . . be a run. Then Red(Ni) ⊆ Red(N∞) and
Red(Ni) ⊆ Red(N∗) for every i.

Proof. Exercise. 2

Corollary 3.58 Ni ⊆ N∗ ∪Red(N∗) for every i.

Proof. If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w. r. t. Nk+1. Consequently, C is redundant w. r. t. N∗. 2

A run is called fair, if the conclusion of every inference from clauses in N∗ \ Red(N∗) is
contained in some Ni ∪ Red(Ni).

Lemma 3.59 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N∗ is contained in some Ni ∪ Red(Ni), and therefore contained in N∗ ∪
Red(N∗). Hence N∗ is saturated up to redundancy. 2

Theorem 3.60 (Refutational Completeness: Dynamic View) Let N0 ` N1 ` N2 `
. . . be a fair run, let N∗ be its limit. Then N0 has a model if and only if ⊥ /∈ N∗.

Proof. (⇐): By fairness, N∗ is saturated up to redundancy. If ⊥ /∈ N∗, then it has
a term-generated model. Since every clause in N0 is contained in N∗ or redundant
w. r. t. N∗, this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. 2

Superposition: Extensions

Extensions and improvements:

simplification techniques,

selection functions (as for ordered resolution),

redundancy for inferences,

basic strategies,

constraint reasoning.
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Theory Reasoning

Superposition vs. resolution + equality axioms:

specialized inference rules, thus no inferences with theory axioms,

computation modulo symmetry,

stronger ordering restrictions,

no variable overlaps,

stronger redundancy criterion.

Similar techniques can be used for other theories:

transitive relations,

dense total orderings without endpoints,

commutativity,

associativity and commutativity,

abelian monoids,

abelian groups,

divisible torsion-free abelian groups.

Observations:

no inferences with theory axioms:
yes, usually possible.

computation modulo theory axioms:
often possible, but requires unification and orderings modulo theory.

stronger ordering restrictions, no variable overlaps:
sometimes possible, but in many cases, certain variable overlaps remain necessary.

stronger redundancy criterion:
depends on the model construction.

In many cases, integrating more theory axioms simplifies matters.

Inefficient unification procedures may be replaced by constraints.
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