
1.4 Ordered Binary Decision Diagrams

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in

Computer Science: Modelling and Reasoning about Systems,

Cambridge Univ. Press, 2000.

1

1.5 Normal Forms

We define conjunctions of formulas as follows:
∧0

i=1
Fi = >.

∧1

i=1
Fi = F1.

∧
n+1

i=1
Fi =

∧
n

i=1
Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1
Fi = ⊥.

∨1

i=1
Fi = F1.

∨
n+1

i=1
Fi =

∨
n

i=1
Fi ∨ Fn+1.

2

Literals and Clauses

A literal is either a propositional variable P or a negated

propositional variable ¬P.

A clause is a (possibly empty) disjunction of literals.

3

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal

form), if it is a conjunction of disjunctions of literals (or in other

words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a

disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?

are duplicated literals permitted?

are empty disjunctions/conjunctions permitted?

4

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of

DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and ¬P.

Conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary

literals P and ¬P.

On the other hand, checking the unsatisfiability of CNF formulas

or the validity of DNF formulas is known to be coNP-complete.

5

Conversion to CNF/DNF

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and

also an equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity

and commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

(F ↔ G) ⇒K (F → G) ∧ (G → F)

6

Conversion to CNF/DNF

Step 2: Eliminate implications:

(F → G) ⇒K (¬F ∨ G)

Step 3: Push negations downward:

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

Step 4: Eliminate multiple negations:

¬¬F ⇒K F

7

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

Step 6: Eliminate > and ⊥:

(F ∧ >) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ >) ⇒K >

(F ∨ ⊥) ⇒K F

¬⊥ ⇒K >

¬> ⇒K ⊥

8

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only step 3

and step 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in

CNF.

The conversion of a formula to DNF works in the same way,

except that disjunctions have to be pushed downward in step 5.

9

Complexity

Conversion to CNF (or DNF) may produce a formula whose size

is exponential in the size of the original one.

10

Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that |= F ↔ G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ iff G |= ⊥”

we can get an efficient transformation.

11

Satisfiability-preserving Transformations

Idea: A formula F [F ′] is satisfiable if and only if F [P]∧ (P ↔ F ′)

is satisfiable

(where P is a new propositional variable that works as an

abbreviation for F ′).

We can use this rule recursively for all subformulas in the original

formula (this introduces a linear number of new propositional

variables).

Conversion of the resulting formula to CNF increases the size

only by an additional factor (each formula P ↔ F ′ gives rise to

at most one application of the distributivity law).

12

Optimized Transformations

A further improvement is possible by taking the polarity of the

subformula F into account.

Assume that F contains neither → nor ↔. A subformula F ′ of

F has positive polarity in F , if it occurs below an even number

of negation signs; it has negative polarity in F , if it occurs below

an odd number of negation signs.

13

Optimized Transformations

Proposition 1.9:

Let F [F ′] be a formula containing neither → nor ↔; let P be a

propositional variable not occurring in F [F ′].

If F ′ has positive polarity in F , then F [F ′] is satisfiable if and

only if F [P] ∧ (P → F ′) is satisfiable.

If F ′ has negative polarity in F , then F [F ′] is satisfiable if and

only if F [P] ∧ (F ′ → P) is satisfiable.

Proof:

Exercise.

14

