Simplification Orderings

The proper subterm ordering > is defined by s > t if and only if
s/p = t for some position p # € of s.



Simplification Orderings

A rewrite ordering > over Ty (X) is called simplification ordering,
iIf it has the subterm property:
s> t implies s =t for all s,t € Tg(X).

Example:

Let R.mp be the rewrite system
Remb ={f(x1,.-..Xn) = % | F/neQ, n>11<i<n}.

Define >emp = —>J,5emb and Demp = — 5

emb

(“homeomorphic embedding relation™).

>emb 1S @ simplification ordering.



Simplification Orderings

Lemma 3.31:
If > is a simplification ordering, then s >¢mp t Implies s > t and
S Demb t IMmplies s >~ t.

Proof:

Since >~ is transitive and > is transitive and reflexive, it suffices
to show that s —g . t implies s > t.

By definition, s —g . t if and only if s = s[lo] and t = s[ro]
for some rule [ — r € Remp.

Obviously, / > r for all rules in Remp, hence [ = r.

Since > is a rewrite relation, s = s[lo]| > s[ro] = t.



Simplification Orderings

Goal:

Show that every simplification ordering is well-founded

(and therefore a reduction ordering).
Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification

orderings and the definition of embedding have to be modified.



Kruskal’s Theorem

A (usually not strict) partial ordering >~ on a set A is called
well-partial-ordering (wpo), if for every infinite sequence
ai, az, as, ... there are indices / < j such that a; < a;.

Terminology:

An infinite sequence ay, a», az, ... Is called good, if there exist

I < J such that a; < a;; otherwise it is called bad.

Therefore: > is a wpo iff every infinite sequence is good.



Kruskal’s Theorem

Lemma 3.32:

If > is a wpo, then every infinite sequence a1, as, a3, ... has
an infinite ascending subsequence a; <X a;, < a;, = ..., where
H<bh<i<....

Proof:

Let a;, a», a3,... be an infinite sequence. We call an index

m > 1 terminal, if there is no n > m such that a,, < a,.

There are only finitely many terminal indices my, my, ms, .. .;
otherwise the sequence a,,, am,, am,, ... would be bad.
Choose p > 1 such that all m > p are not terminal; define
ip = p; define recursively /;;1 such that /;;1 > j; and a;,, = a;.



Kruskal’s Theorem

Lemma 3.33:
If >41,...,>, are wpo'son Aq,...,A,, then > defined by
(a1,...,an) = (a1, ...,a) iff a; =; al for all J

Isa wpoon A; X --- X A,.

Proof:
The case n =1 is trivial.
Otherwise let (agl) ..... agl)), (agz) ..... a,(qz)), ... be an infinite

sequence. By the previous lemma, there are infinitely many
indices i; < I» < i3 < ... such that gl < glz) < gls) o

By induction on n, there are k < [/ such that ali") < agi’) A A
ag'ﬁ)l < a("_)l. Therefore (ag"‘) ..... aff")) < (ag") ..... af,")).

n



Kruskal’s Theorem

Theorem 3.34 ( “Kruskal's Theorem”):

Let X be a finite signature, let X be a finite set of variables.
Then >emp is @ wpo on Tx(X).

Proof:
Baader and Nipkow, page 114/115.



Simplification Orderings

Theorem 3.35 (Dershowitz):
If X is a finite signature, then every simplification ordering > on
Tx(X) is well-founded (and therefore a reduction ordering).

Proof:
Suppose that t; > t, > t3 > ... is an infinite decreasing chain.

First assume that there is an x € var(t;11) \ var(t;).
Let ¢ = [t;j/x], then tj;10 > xo = t; and therefore
ti = tijo > tip 10 >~ t;, contradicting reflexivity.

Consequently, var(t;) D var(tjii1) and t; € Tx(V) for all i,
where V is the finite set var(t;). By Kruskal’s Theorem, there
are 1 < j with t; <emp tj. Hence t; < t;, contradicting t; > t;.



Simplification Orderings

There are reduction orderings that are not simplification
orderings and terminating TRSs that are not contained in any

simplification ordering.

Example:

Let R = {f(f(x)) — f(g(f(x)));.

R terminates and %75 Is therefore a reduction ordering.

Assume that — g were contained in a simplification ordering .

Then f(f(x)) —r f(g(f(x))) implies f(f(x)) = f(g(f(x))),
and f(g(f(x))) Bemb f(f(x)) implies f(g(f(x))) = f(f(x)),
hence f(f(x)) = f(f(x)).
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Recursive Path Orderings

Let > = (€2, 1) be a finite signature, let > be a strict partial
ordering ( “precedence” ) on Q.

The lexicographic path ordering >|,, on Tx(X) induced by > is
defined by: s >, t iff

(1) t €var(s) and t # s, or

(2) s ="f(s1,..., Sm), t =g(ty, ..., t,), and
(@) si =ipo t for some i, or
(b) f > g and s >, t; for all j, or

(c) f =g, 5 >po tj for all j, and
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Recursive Path Orderings

Lemma 3.36:
S >Ipo t implies var(s) D var(t).

Proof:
By induction on |s| 4 |t| and case analysis.
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Recursive Path Orderings

Theorem 3.37:

>1po IS @ simplification ordering on Tx(X).

Proof:

Show transitivity, subterm property, stability under substitutions,
compatibility with X-operations, and irreflexivity, usually by
induction on the sum of the term sizes and case analysis.
Details: Baader and Nipkow, page 119/120.
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Recursive Path Orderings

Theorem 3.38:

If the precedence > is total, then the lexicographic path ordering
>~Ipo IS total on ground terms, i.e., for all s, t € T (0):

S > lpo t VI >poSVS=TL.

Proof:
By induction on |s| 4 |t| and case analysis.
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Recursive Path Orderings

Recapitulation:

Let > = (€2, 1) be a finite signature, let > be a strict partial
ordering ( “precedence”) on 2. The lexicographic path ordering
>1po ON Tx(X) induced by > is defined by: s >, t iff

(1) t €var(s) and t # s, or

(@) s;i =ipo t for some i, or
(b) f > g and s >, t; for all j, or

(c) f =g, 5 >po tj for all j, and
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Recursive Path Orderings

There are several possibilities to compare subterms in (2)(c):

compare list of subterms lexicographically left-to-right
(“lexicographic path ordering (Ipo)”, Kamin and Lévy)

compare list of subterms lexicographically right-to-left
(or according to some permutation )

compare multiset of subterms using the multiset extension
(“multiset path ordering (mpo)”, Dershowitz)

to each function symbol f/n associate a

status € {mul} U{lex; | 7m:{1,...,n} = {1,...,n}}
and compare according to that status

(“recursive path ordering (rpo) with status”)
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The Knuth-Bendix Ordering

Let & = (€2, 1) be a finite signature,
let > be a strict partial ordering ( “precedence”) on €,
let w: QU X — RJ be a weight function,

such that the following admissibility conditions are satisfied:

w(x) = wg € RT for all variables x € X;
w(c) > wy for all constants ¢/0 € Q.

If w(f) =20 for some f/1 € Q, then f > g for all g € (2.

w can be extended to terms as follows:

w(t) = ) wi(x)-#(x, 1)+ Y w(f)-#(f. t).

x€Evar(t) fe2
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The Knuth-Bendix Ordering

The Knuth-Bendix ordering >yp, on Tx(X) induced by > and
w i1s defined by: S >kpo t Iff

(1) #(x,s) > #(x, t) for all variables x and w(s) > w(t), or
(2) #(x,s) > #(x, t) for all variables x, w(s) = w(t), and

(a) t =x, s = f"(x) for some n>1, or
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The Knuth-Bendix Ordering

Theorem 3.39:
The Knuth-Bendix ordering induced by > and w is a
simplification ordering on Ty (X).

Proof:
Baader and Nipkow, pages 125-129.
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3.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an

equivalent convergent set R of rewrite rules.

How to ensure termination?

Fix a reduction ordering > and construct R in such a way
that - C > (i.e., | = r for every | — r € R).

How to ensure confluence?

Check that all critical pairs are joinable.
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Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules

working on a set of equations E and a set of rules R:
Eo, Rotb- E1, Ri - E, R ...

At the beginning, E = Ej is the input set and R = Ry is empty.
At the end, E should be empty; then R is the result.

For each step E, R+ E’, R’, the equational theories of E U R
and E’ U R’ agree: ~p_r = R~E'UR’.
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Knuth-Bendix Completion: Inference Rules

Notations:

The formula s &~ t denotes either s~ t or t ~ s.

CP(R) denotes the set of all critical pairs between rules in R.
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Knuth-Bendix Completion: Inference Rules

Orient:
E ~
Uis~t), R if s>t
E, RU{s—t}

Note: There are equations s = t that cannot be oriented,

I.e., neither s = t nor t > s.
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Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented — but we don't need them

anyway:

Delete:
EU{s~s}, R
E, R
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Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional

equations:
Deduce:
E. R
: if (s,t) € CP(R).
EUl{s~1]. R if (s, t) € CP(R)

Note: If (s,t) € CP(R) then s «—r u —g t and hence
REs~t.
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Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary,
but very useful (e.g., to get rid of joinable critical pairs and
to deal with equations that cannot be oriented):

Simplify-Eq:

EU{s~t}, R

if .
EU{u~t}, R "o TRA
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Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule:

E, RU{s—t}

f t |
E. RU{s >u} = —RY

Simplification of the left-hand side may influence orientability
and orientation. Therefore, it yields an equation:

L-Simplify-Rule:

E. RU{S—>t} f s —rpuusingarule/ - reR
EUu{u~t}, R such that s 3/ (see next slide).
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Knuth-Bendix Completion: Inference Rules

For technical reasons, the |hs of s — t may only be simplified
using a rule [ — r, if | — r cannot be simplified using s — t,
that is, if s 71/, where the encompassment quasi-ordering g IS
defined by

s I/ if s/p=lo for some p and o

and J = J\ L is the strict part of .

Lemma 3.40:
1 is a well-founded strict partial ordering.
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Knuth-Bendix Completion: Inference Rules

Lemma 3.41:
If E,RF E’, R, then =g r = ~pr_R.

Lemma 3.42:
If EER+-E’ R and —p C >, then —p C »>.
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Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations,
different things can happen:

(1) We reach a state where no more inference rules are
applicable and E is not empty.
= Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs
between the rules in the current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some
definitions.
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Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) Eo, Ro - E1, R1 F Eo, Ro F ...

with Ry = 0 is called a run of the completion procedure
with input Eg and >.

For a run, Exc = U;>q Ei and R = U5 R

The sets of persistent equations or rules of the run are
E.=Uisoj»i B and Ry =Uiso > K-

Note: If the run is finite and ends with E,, R,

then E, = E, and R, = R,,.
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Knuth-Bendix Completion: Correctness Proof

A run is called fair, if CP(R,) C E
(i.e., if every critical pair between persisting rules is computed
at some step of the derivation).

Goal:

Show: If a run is fair and E, is empty,

then R, is convergent and equivalent to Ey.

In particular: If a run is fair and E, is empty,

then ~NE = VE L URs — “7E. UR. — IR,
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Knuth-Bendix Completion: Correctness Proof

General assumptions from now on:
EO, Ro - El, Rl - E2, R2 ... is a fair run.

Ry and E, are empty.
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Knuth-Bendix Completion: Correctness Proof

A proof of s &= t in Esc U Ry is a finite sequence (sg, ..., Sh)
such that s = sy, t =s,, and for all i € {1,...,n}:

(1) si_1 «<>g_ s, or
(2) si—1 —r. si, or

(3) S5i—1 R S;.
The pairs (s;_1,s;) are called proof steps.

A proof is called a rewrite proof in R,,
if there isa k € {0,...,n} such that s;_ 1 —g s; for 1 <i<k
and s;_1 g, sifor k+1<i<n
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Knuth-Bendix Completion: Correctness Proof

ldea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every
proof that is not a rewrite proof in R, there is an equivalent

smaller proof.

Consequence: For every proof there is an equivalent rewrite

proof in R,.
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Knuth-Bendix Completion: Correctness Proof

We associate a cost ¢(s;_1, s;) with every proof step as follows:

(1) If si_1 <£, si, then c(si—1,5) = ({si-1,si}, — —),
where the first component is a multiset of terms and —
denotes an arbitrary (irrelevant) term.

(2) If Si—1 7R, Si using | — r, then C(S,'_l, S,') — ({S,'_l}, /, S,').

(3) If s;_4 “—R. Si using | — r, then C(S,'_l, S,') = ({S,'}, / S,'_1).

Proof steps are compared using the lexicographic combination
of the multiset extension of reduction ordering >, the
encompassment ordering J, and the reduction ordering >.
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Knuth-Bendix Completion: Correctness Proof

The cost ¢(P) of a proof P is the multiset of the costs of its
proof steps.

The proof ordering > compares the costs of proofs using the
multiset extension of the proof step ordering.

Lemma 3.43:
> c Is a well-founded ordering.
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Knuth-Bendix Completion: Correctness Proof

Lemma 3.44:
Let P be a proof in E.o U Ry. If P is not a rewrite proof in R,,
then there exists an equivalent proof P’ in E., U Ry such that

P —C P’

Proof:
If P is not a rewrite proof in Ry, then it contains

(a) a proof step that is in E, or
(b) a proof step that is in Ry, \ Ry, or
(c) a subproof s;_1 «r. s; —r. sit1 (peak).

We show that in all three cases the proof step or subproof can
be replaced by a smaller subproof:
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Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation s & t is in E..
This equation must be deleted during the run.

If s = t is deleted using Orient:

.. Si—1 E_ Si--. — e Si-1 7R, Si.--

If s = t is deleted using Delete:

. Si—1 <E_ Si—1--. — .. S_1...

If s = t is deleted using Simplify-Eq:

e Si—1 E_Si--.. — ...S,'_1—>ROOS,<—>EOOS,'...
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Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule s — t isin Ry \ R..
This rule must be deleted during the run.

If s — t is deleted using R-Simplify-Rule:

e Si1 7R, Si--- — ...S,'_1—>ROOS’%ROOS,'...

If s — t is deleted using L-Simplify-Rule:

/
e Si1 7R, Si--- — ...S-1—7R._S “E_Si---
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Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form s; 1 «g_s; —r, Sji1.

If there is no overlap or a non-critical overlap:

.S 1R, S 7R, Si+1--.- — ...S51 —>>er* s’ <—>;\>

*

If there is a critical pair that has been added using Deduce:

.51 R, S 7R, Si+1... — ce.Si1 <E_ Si...

In all cases, checking that the replacement subproof is smaller

than the replaced subproof is routine.

Sj+1---
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Knuth-Bendix Completion: Correctness Proof

Theorem 3.45:

Let Eg, Ro - E1,R1 F E>, R, = ... be a fair run and let Ry and
E. be empty. Then

(1) every proofin E., U Ry is equivalent to a rewrite proof in R,,
(2) R, is equivalent to Ey, and

(3) R. is convergent.
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Knuth-Bendix Completion: Correctness Proof

Proof:
(1) By well-founded induction on > ¢ using the previous lemma.

(2) Clearly ~g_ur. = ~g,.
Since R, C Ruo, we get ~g, C =g _uUr

o0 oo "

On the other hand, by (1), ~g_ur. C =g,.

(3) Since —g, C =, R, is terminating.
By (1), R« is confluent.
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Knuth-Bendix Completion: Outlook

Classical completion:

Fails, if an equation can neither be oriented nor deleted.

Unfailing Completion:
Use an ordering > that is total on ground terms.

If an equation cannot be oriented, use it in both directions for
rewriting (except if that would yield a larger term).
In other words, consider the relation < g N A.

Special case of superposition (see next chapter).
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