
Simplification Orderings

The proper subterm ordering B is defined by s B t if and only if

s/p = t for some position p 6= ε of s.
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Simplification Orderings

A rewrite ordering � over TΣ(X ) is called simplification ordering,

if it has the subterm property:

s B t implies s � t for all s, t ∈ TΣ(X ).

Example:

Let Remb be the rewrite system

Remb = { f (x1, . . . , xn)→ xi | f /n ∈ Ω, n ≥ 1, 1 ≤ i ≤ n }.

Define Bemb =→+
Remb

and Demb =→∗
Remb

(“homeomorphic embedding relation”).

Bemb is a simplification ordering.
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Simplification Orderings

Lemma 3.31:

If � is a simplification ordering, then s Bemb t implies s � t and

s Demb t implies s � t.

Proof:

Since � is transitive and � is transitive and reflexive, it suffices

to show that s →Remb
t implies s � t.

By definition, s →Remb
t if and only if s = s[lσ] and t = s[rσ]

for some rule l → r ∈ Remb.

Obviously, l B r for all rules in Remb, hence l � r .

Since � is a rewrite relation, s = s[lσ] � s[rσ] = t.
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Simplification Orderings

Goal:

Show that every simplification ordering is well-founded

(and therefore a reduction ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification

orderings and the definition of embedding have to be modified.
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Kruskal’s Theorem

A (usually not strict) partial ordering � on a set A is called

well-partial-ordering (wpo), if for every infinite sequence

a1, a2, a3, . . . there are indices i < j such that ai � aj .

Terminology:

An infinite sequence a1, a2, a3, . . . is called good, if there exist

i < j such that ai � aj ; otherwise it is called bad.

Therefore: � is a wpo iff every infinite sequence is good.
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Kruskal’s Theorem

Lemma 3.32:

If � is a wpo, then every infinite sequence a1, a2, a3, . . . has

an infinite ascending subsequence ai1 � ai2 � ai3 � . . . , where

i1 < i2 < i3 < . . . .

Proof:

Let a1, a2, a3, . . . be an infinite sequence. We call an index

m ≥ 1 terminal, if there is no n > m such that am � an.

There are only finitely many terminal indices m1,m2,m3, . . . ;

otherwise the sequence am1
, am2

, am3
, . . . would be bad.

Choose p > 1 such that all m ≥ p are not terminal; define

i1 = p; define recursively ij+1 such that ij+1 > ij and aij+1
� aij .
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Kruskal’s Theorem

Lemma 3.33:

If �1, . . . ,�n are wpo’s on A1, . . . ,An, then � defined by

(a1, . . . , an) � (a′

1, . . . , a
′

n) iff ai �i a′

i for all i

is a wpo on A1 × · · · × An.

Proof:

The case n = 1 is trivial.

Otherwise let (a
(1)
1 , . . . , a

(1)
n ), (a

(2)
1 , . . . , a

(2)
n ), . . . be an infinite

sequence. By the previous lemma, there are infinitely many

indices i1 < i2 < i3 < . . . such that a
(i1)
n � a

(i2)
n � a

(i3)
n � . . . .

By induction on n, there are k < l such that a
(ik )
1 � a

(il )
1 ∧ · · · ∧

a
(ik )
n−1 � a

(il )
n−1. Therefore (a

(ik )
1 , . . . , a

(ik )
n ) � (a

(il )
1 , . . . , a

(il )
n ).
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Kruskal’s Theorem

Theorem 3.34 (“Kruskal’s Theorem”):

Let Σ be a finite signature, let X be a finite set of variables.

Then Demb is a wpo on TΣ(X ).

Proof:

Baader and Nipkow, page 114/115.
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Simplification Orderings

Theorem 3.35 (Dershowitz):

If Σ is a finite signature, then every simplification ordering � on

TΣ(X ) is well-founded (and therefore a reduction ordering).

Proof:

Suppose that t1 � t2 � t3 � . . . is an infinite decreasing chain.

First assume that there is an x ∈ var(ti+1) \ var(ti ).

Let σ = [ti/x ], then ti+1σ D xσ = ti and therefore

ti = tiσ � ti+1σ � ti , contradicting reflexivity.

Consequently, var(ti ) ⊇ var(ti+1) and ti ∈ TΣ(V ) for all i ,

where V is the finite set var(t1). By Kruskal’s Theorem, there

are i < j with ti Eemb tj . Hence ti � tj , contradicting ti � tj .
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Simplification Orderings

There are reduction orderings that are not simplification

orderings and terminating TRSs that are not contained in any

simplification ordering.

Example:

Let R = {f (f (x))→ f (g(f (x)))}.

R terminates and →+
R is therefore a reduction ordering.

Assume that→R were contained in a simplification ordering �.

Then f (f (x)) →R f (g(f (x))) implies f (f (x)) � f (g(f (x))),

and f (g(f (x))) Demb f (f (x)) implies f (g(f (x))) � f (f (x)),

hence f (f (x)) � f (f (x)).
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Recursive Path Orderings

Let Σ = (Ω,Π) be a finite signature, let � be a strict partial

ordering (“precedence”) on Ω.

The lexicographic path ordering �lpo on TΣ(X ) induced by � is

defined by: s �lpo t iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i , or

(b) f � g and s �lpo tj for all j , or

(c) f = g , s �lpo tj for all j , and

(s1, . . . , sm) (�lpo)lex (t1, . . . , tn).
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Recursive Path Orderings

Lemma 3.36:

s �lpo t implies var(s) ⊇ var(t).

Proof:

By induction on |s|+ |t| and case analysis.
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Recursive Path Orderings

Theorem 3.37:

�lpo is a simplification ordering on TΣ(X ).

Proof:

Show transitivity, subterm property, stability under substitutions,

compatibility with Σ-operations, and irreflexivity, usually by

induction on the sum of the term sizes and case analysis.

Details: Baader and Nipkow, page 119/120.
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Recursive Path Orderings

Theorem 3.38:

If the precedence � is total, then the lexicographic path ordering

�lpo is total on ground terms, i. e., for all s, t ∈ TΣ(∅):

s �lpo t ∨ t �lpo s ∨ s = t.

Proof:

By induction on |s|+ |t| and case analysis.
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Recursive Path Orderings

Recapitulation:

Let Σ = (Ω,Π) be a finite signature, let � be a strict partial

ordering (“precedence”) on Ω. The lexicographic path ordering

�lpo on TΣ(X ) induced by � is defined by: s �lpo t iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i , or

(b) f � g and s �lpo tj for all j , or

(c) f = g , s �lpo tj for all j , and

(s1, . . . , sm) (�lpo)lex (t1, . . . , tn).
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Recursive Path Orderings

There are several possibilities to compare subterms in (2)(c):

compare list of subterms lexicographically left-to-right

(“lexicographic path ordering (lpo)”, Kamin and Lévy)

compare list of subterms lexicographically right-to-left

(or according to some permutation π)

compare multiset of subterms using the multiset extension

(“multiset path ordering (mpo)”, Dershowitz)

to each function symbol f /n associate a

status ∈ {mul } ∪ { lexπ | π : {1, . . . , n} → {1, . . . , n} }

and compare according to that status

(“recursive path ordering (rpo) with status”)
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The Knuth-Bendix Ordering

Let Σ = (Ω,Π) be a finite signature,

let � be a strict partial ordering (“precedence”) on Ω,

let w : Ω ∪ X → R
+
0 be a weight function,

such that the following admissibility conditions are satisfied:

w(x) = w0 ∈ R
+ for all variables x ∈ X ;

w(c) ≥ w0 for all constants c/0 ∈ Ω.

If w(f ) = 0 for some f /1 ∈ Ω, then f � g for all g ∈ Ω.

w can be extended to terms as follows:

w(t) =
∑

x∈var(t)

w(x) ·#(x , t) +
∑

f ∈Ω

w(f ) ·#(f , t).
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The Knuth-Bendix Ordering

The Knuth-Bendix ordering �kbo on TΣ(X ) induced by � and

w is defined by: s �kbo t iff

(1) #(x , s) ≥ #(x , t) for all variables x and w(s) > w(t), or

(2) #(x , s) ≥ #(x , t) for all variables x , w(s) = w(t), and

(a) t = x , s = f n(x) for some n ≥ 1, or

(b) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and f � g , or

(c) s = f (s1, . . . , sm), t = f (t1, . . . , tm), and

(s1, . . . , sm) (�kbo)lex (t1, . . . , tm).
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The Knuth-Bendix Ordering

Theorem 3.39:

The Knuth-Bendix ordering induced by � and w is a

simplification ordering on TΣ(X ).

Proof:

Baader and Nipkow, pages 125–129.
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3.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an

equivalent convergent set R of rewrite rules.

How to ensure termination?

Fix a reduction ordering � and construct R in such a way

that →R ⊆ � (i. e., l � r for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.
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Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules

working on a set of equations E and a set of rules R:

E0,R0 ` E1,R1 ` E2,R2 ` . . .

At the beginning, E = E0 is the input set and R = R0 is empty.

At the end, E should be empty; then R is the result.

For each step E ,R ` E ′,R ′, the equational theories of E ∪ R

and E ′ ∪ R ′ agree: ≈E∪R = ≈E ′∪R′ .
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Knuth-Bendix Completion: Inference Rules

Notations:

The formula s
.

≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.
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Knuth-Bendix Completion: Inference Rules

Orient:

E ∪ {s
.

≈ t}, R

E , R ∪ {s → t}
if s � t

Note: There are equations s ≈ t that cannot be oriented,

i. e., neither s � t nor t � s.
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Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented – but we don’t need them

anyway:

Delete:

E ∪ {s ≈ s}, R

E , R
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Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional

equations:

Deduce:

E , R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R) then s ←R u →R t and hence

R |= s ≈ t.
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Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary,

but very useful (e.g., to get rid of joinable critical pairs and

to deal with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.

≈ t}, R

E ∪ {u ≈ t}, R
if s →R u.
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Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule:

E , R ∪ {s → t}

E , R ∪ {s → u}
if t →R u.

Simplification of the left-hand side may influence orientability

and orientation. Therefore, it yields an equation:

L-Simplify-Rule:

E , R ∪ {s → t}

E ∪ {u ≈ t}, R

if s →R u using a rule l → r ∈ R

such that s A l (see next slide).
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Knuth-Bendix Completion: Inference Rules

For technical reasons, the lhs of s → t may only be simplified

using a rule l → r , if l → r cannot be simplified using s → t,

that is, if s A l , where the encompassment quasi-ordering A
∼ is

defined by

s A
∼ l if s/p = lσ for some p and σ

and A = A
∼ \

@
∼ is the strict part of A

∼.

Lemma 3.40:

A is a well-founded strict partial ordering.
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Knuth-Bendix Completion: Inference Rules

Lemma 3.41:

If E ,R ` E ′,R ′, then ≈E∪R = ≈E ′∪R′ .

Lemma 3.42:

If E ,R ` E ′,R ′ and →R ⊆ �, then →R′ ⊆ �.
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Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations,

different things can happen:

(1) We reach a state where no more inference rules are

applicable and E is not empty.

⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs

between the rules in the current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some

definitions.
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Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) E0,R0 ` E1,R1 ` E2,R2 ` . . .

with R0 = ∅ is called a run of the completion procedure

with input E0 and �.

For a run, E∞ =
⋃

i≥0 Ei and R∞ =
⋃

i≥0 Ri .

The sets of persistent equations or rules of the run are

E∗ =
⋃

i≥0

⋂
j≥i Ej and R∗ =

⋃
i≥0

⋂
j≥i Rj .

Note: If the run is finite and ends with En,Rn,

then E∗ = En and R∗ = Rn.
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Knuth-Bendix Completion: Correctness Proof

A run is called fair, if CP(R∗) ⊆ E∞

(i. e., if every critical pair between persisting rules is computed

at some step of the derivation).

Goal:

Show: If a run is fair and E∗ is empty,

then R∗ is convergent and equivalent to E0.

In particular: If a run is fair and E∗ is empty,

then ≈E0
= ≈E∞∪R∞

=↔E∞∪R∞
= ↓R∗

.
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Knuth-Bendix Completion: Correctness Proof

General assumptions from now on:

E0,R0 ` E1,R1 ` E2,R2 ` . . . is a fair run.

R0 and E∗ are empty.
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Knuth-Bendix Completion: Correctness Proof

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn)

such that s = s0, t = sn, and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∞
si , or

(2) si−1 →R∞
si , or

(3) si−1 ←R∞
si .

The pairs (si−1, si ) are called proof steps.

A proof is called a rewrite proof in R∗,

if there is a k ∈ {0, . . . , n} such that si−1 →R∗
si for 1 ≤ i ≤ k

and si−1 ←R∗
si for k + 1 ≤ i ≤ n
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Knuth-Bendix Completion: Correctness Proof

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every

proof that is not a rewrite proof in R∗ there is an equivalent

smaller proof.

Consequence: For every proof there is an equivalent rewrite

proof in R∗.
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Knuth-Bendix Completion: Correctness Proof

We associate a cost c(si−1, si ) with every proof step as follows:

(1) If si−1 ↔E∞
si , then c(si−1, si ) = ({si−1, si},−,−),

where the first component is a multiset of terms and −

denotes an arbitrary (irrelevant) term.

(2) If si−1 →R∞
si using l → r , then c(si−1, si ) = ({si−1}, l , si ).

(3) If si−1 ←R∞
si using l → r , then c(si−1, si ) = ({si}, l , si−1).

Proof steps are compared using the lexicographic combination

of the multiset extension of reduction ordering �, the

encompassment ordering A, and the reduction ordering �.
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Knuth-Bendix Completion: Correctness Proof

The cost c(P) of a proof P is the multiset of the costs of its

proof steps.

The proof ordering �C compares the costs of proofs using the

multiset extension of the proof step ordering.

Lemma 3.43:

�C is a well-founded ordering.
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Knuth-Bendix Completion: Correctness Proof

Lemma 3.44:

Let P be a proof in E∞ ∪ R∞. If P is not a rewrite proof in R∗,

then there exists an equivalent proof P ′ in E∞ ∪ R∞ such that

P �C P ′.

Proof:

If P is not a rewrite proof in R∗, then it contains

(a) a proof step that is in E∞, or

(b) a proof step that is in R∞ \ R∗, or

(c) a subproof si−1 ←R∗
si →R∗

si+1 (peak).

We show that in all three cases the proof step or subproof can

be replaced by a smaller subproof:
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Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation s
.

≈ t is in E∞.

This equation must be deleted during the run.

If s
.

≈ t is deleted using Orient:

. . . si−1 ↔E∞
si . . . =⇒ . . . si−1 →R∞

si . . .

If s
.

≈ t is deleted using Delete:

. . . si−1 ↔E∞
si−1 . . . =⇒ . . . si−1 . . .

If s
.

≈ t is deleted using Simplify-Eq:

. . . si−1 ↔E∞
si . . . =⇒ . . . si−1 →R∞

s′ ↔E∞
si . . .
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Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule s → t is in R∞ \ R∗.

This rule must be deleted during the run.

If s → t is deleted using R-Simplify-Rule:

. . . si−1 →R∞
si . . . =⇒ . . . si−1 →R∞

s′ ←R∞
si . . .

If s → t is deleted using L-Simplify-Rule:

. . . si−1 →R∞
si . . . =⇒ . . . si−1 →R∞

s′ ↔E∞
si . . .
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Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form si−1 ←R∗
si →R∗

si+1.

If there is no overlap or a non-critical overlap:

. . . si−1 ←R∗
si →R∗

si+1 . . . =⇒ . . . si−1 →
∗
R∗

s′ ←∗
R∗

si+1 . . .

If there is a critical pair that has been added using Deduce:

. . . si−1 ←R∗
si →R∗

si+1 . . . =⇒ . . . si−1 ↔E∞
si . . .

In all cases, checking that the replacement subproof is smaller

than the replaced subproof is routine.
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Knuth-Bendix Completion: Correctness Proof

Theorem 3.45:

Let E0,R0 ` E1,R1 ` E2,R2 ` . . . be a fair run and let R0 and

E∗ be empty. Then

(1) every proof in E∞ ∪R∞ is equivalent to a rewrite proof in R∗,

(2) R∗ is equivalent to E0, and

(3) R∗ is convergent.

42



Knuth-Bendix Completion: Correctness Proof

Proof:

(1) By well-founded induction on �C using the previous lemma.

(2) Clearly ≈E∞∪R∞
= ≈E0 .

Since R∗ ⊆ R∞, we get ≈R∗
⊆ ≈E∞∪R∞

.

On the other hand, by (1), ≈E∞∪R∞
⊆ ≈R∗

.

(3) Since →R∗
⊆ �, R∗ is terminating.

By (1), R∗ is confluent.
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Knuth-Bendix Completion: Outlook

Classical completion:

Fails, if an equation can neither be oriented nor deleted.

Unfailing Completion:

Use an ordering � that is total on ground terms.

If an equation cannot be oriented, use it in both directions for

rewriting (except if that would yield a larger term).

In other words, consider the relation ↔E ∩ 6�.

Special case of superposition (see next chapter).
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