
3.4 Critical Pairs

Showing local confluence (Sketch):

Problem: If t1 ←E t0 →E t2, does there exist a term s such

that t1 →
∗
E s ←∗

E t2 ?

If the two rewrite steps happen in different subtrees (disjoint

redexes): yes.

If the two rewrite steps happen below each other (overlap at

or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable

position: needs further investigation.
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Critical Pairs

Showing local confluence (Sketch):

Question:

Are there rewrite rules l1 → r1 and l2 → r2 such that some

subterm l1/p and l2 have a common instance (l1/p)σ1 = l2σ2 ?

Observation:

If we assume w.o.l.o.g. that the two rewrite rules do not have

common variables, then only a single substitution is necessary:

(l1/p)σ = l2σ.

Further observation:

The mgu of l1/p and l2 subsumes all unifiers σ of l1/p and l2.
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Critical Pairs

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R

whose variables have been renamed such that

var({l1, r1}) ∩ var({l2, r2}) = ∅.

Let p ∈ pos(l1) be a position such that l1/p is not a variable

and σ is an mgu of l1/p and l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p .

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p .
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Critical Pairs

Theorem 3.18 (“Critical Pair Theorem”):

A TRS R is locally confluent if and only if all its critical pairs

are joinable.

Proof:

“only if”: obvious, since joinability of a critical pair is a special

case of local confluence.
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Critical Pairs

Proof:

“if”: Suppose s rewrites to t1 and t2 using rewrite rules

li → ri ∈ R at positions pi ∈ pos(s), where i = 1, 2.

Without loss of generality, we can assume that the two rules are

variable disjoint, hence s/pi = liθ and ti = s[riθ]pi
.

We distinguish between two cases: Either p1 and p2 are in

disjoint subtrees (p1 || p2), or one is a prefix of the other

(w.o.l.o.g., p1 ≤ p2).
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Critical Pairs

Case 1: p1 || p2.

Then s = s[l1θ]p1 [l2θ]p2 ,

and therefore t1 = s[r1θ]p1
[l2θ]p2

and t2 = s[l1θ]p1
[r2θ]p2

.

Let t0 = s[r1θ]p1
[r2θ]p2

.

Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using l1 → r1.
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Critical Pairs

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1 q1 q2, where l1/q1 is some variable x .

In other words, the second rewrite step takes place at or below

a variable in the first rule. Suppose that x occurs m times in l1

and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1 q′ q2,

where q′ is a position of x in r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions

p1 qq2, where q is a position of x in l1 different from q1, and

by applying l1 → r1 at p1 with the substitution θ′, where

θ′ = θ[x 7→ (xθ)[r2θ]q2 ].
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Critical Pairs

Case 2.2: p2 = p1 p, where p is a non-variable position of l1.

Then s/p2 = l2θ and s/p2 = (s/p1)/p = (l1θ)/p = (l1/p)θ,

so θ is a unifier of l2 and l1/p.

Let σ be the mgu of l2 and l1/p,

then θ = τ ◦ σ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1
= s[r1στ ]p1

→∗
R s[vτ ]p1

and

t2 = s[r2θ]p2
= s[(l1θ)[r2θ]p]p1

= s[(l1στ)[r2στ ]p ]p1
=

s[((l1σ)[r2σ]p)τ ]p1
→∗

R s[vτ ]p1
.

This completes the proof of the Critical Pair Theorem.
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Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of)

itself must be considered – except if the overlap is at the root

(i.e., p = ε).
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Critical Pairs

Corollary 3.19:

A terminating TRS R is confluent if and only if all its critical

pairs are joinable.

Proof:

By Newman’s Lemma and the Critical Pair Theorem.
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Critical Pairs

Corollary 3.20:

For a finite terminating TRS, confluence is decidable.

Proof:

For every pair of rules and every non-variable position in the first

rule there is at most one critical pair 〈u1, u2〉.

Reduce every ui to some normal form u′

i . If u′

1 = u′

2 for

every critical pair, then R is confluent, otherwise there is some

non-confluent situation u′

1 ←
∗
R u1 ←R s →R u2 →

∗
R u′

2.
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3.5 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions

starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition 3.21:

Both termination problems for TRSs are undecidable in general.

Proof:

Encode Turing machines using rewrite rules and reduce the

(uniform) halting problems for TMs to the termination problems

for TRSs.
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Termination

Consequence:

Decidable criteria for termination are not complete.
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Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at

finitely many rules l → r ∈ R, rather than at infinitely many

possible replacement steps s →R s′.
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Reduction Orderings

A binary relation A over TΣ(X ) is called

compatible with Σ-operations,

if s A s′ implies f (t1, . . . , s , . . . , tn) A f (t1, . . . , s
′, . . . , tn)

for all f /n ∈ Ω and s, s ′, ti ∈ TΣ(X ).

Lemma 3.22:

The relation A is compatible with Σ-operations, if and only if

s A s′ implies t[s]p A t[s′]p

for all s, s ′, t ∈ TΣ(X ) and p ∈ pos(t).

(compatible with Σ-operations = compatible with contexts)
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Reduction Orderings

A binary relation A over TΣ(X ) is called stable under

substitutions, if s A s′ implies sσ A s′σ

for all s, s ′ ∈ TΣ(X ) and substitutions σ.
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Reduction Orderings

A binary relation A is called a rewrite relation, if it is compatible

with Σ-operations and stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X ) that is a rewrite relation is

called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.
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Reduction Orderings

Theorem 3.23:

A TRS R terminates if and only if there exists a reduction

ordering � such that l � r for every rule l → r ∈ R.

Proof:

“if”: s →R s′ if and only if s = t[lσ]p, s′ = t[rσ]p.

If l � r , then lσ � rσ and therefore t[lσ]p � t[rσ]p.

This implies →R ⊆ �.

Since � is a well-founded ordering, →R is terminating.

“only if”: Define � =→+
R .

If →R is terminating, then � is a reduction ordering.
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The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra;

let � be a well-founded strict partial ordering on its universe.

Define the ordering �A over TΣ(X ) by s �A t iff

A(β)(s) � A(β)(t) for all assignments β : X → UA.

Is �A a reduction ordering?

19



The Interpretation Method

Lemma 3.24:

�A is stable under substitutions.

Proof:

Let s �A s′, that is,

A(β)(s) � A(β)(s ′) for all assignments β : X → UA.

Let σ be a substitution. We have to show that

A(γ)(sσ) � A(γ)(s ′σ) for all assignments γ : X → UA.

Choose β = γ ◦ σ, then by the substitution lemma,

A(γ)(sσ) = A(β)(s) � A(β)(s ′) = A(γ)(s′σ).

Therefore sσ �A s′σ.
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The Interpretation Method

A function F : Un
A
→ UA is called monotone (w.r.t. �),

if a � a′ implies

F (b1, . . . , a, . . . , bn) � F (b1, . . . , a
′, . . . , bn)

for all a, a′, bi ∈ UA.
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The Interpretation Method

Lemma 3.25:

If the interpretation fA of every function symbol f is monotone

w.r.t. �, then �A is compatible with Σ-operations.

Proof:

Let s � s′, that is, A(β)(s) � A(β)(s ′) for all β : X → UA.

Let β : X → UA be an arbitrary assignment.

Then A(β)(f (t1, . . . , s, . . . , tn))

= fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))

� fA(A(β)(t1), . . . ,A(β)(s ′), . . . ,A(β)(tn))

= A(β)(f (t1, . . . , s
′, . . . , tn)).

Therefore f (t1, . . . , s, . . . , tn) �A f (t1, . . . , s
′, . . . , tn).
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The Interpretation Method

Theorem 3.26:

If the interpretation fA of every function symbol f is monotone

w.r.t. �, then �A is a reduction ordering.

Proof:

By the previous two lemmas, �A is a rewrite relation.

If there were an infinite chain s1 �A s2 �A . . . , then it would

correspond to an infinite chain A(β)(s1) � A(β)(s2) � . . .

(with β chosen arbitrarily).

Thus �A is well-founded.

Irreflexivity and transitivity are proved similarly.
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Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is some subset of the natural numbers.

To every n-ary function symbol f associate a

polynomial Pf (X1, . . . ,Xn) ∈ N[X1, . . . ,Xn]

with coefficients in N and indeterminates X1, . . . ,Xn.

Then define fA(a1, . . . , an) = Pf (a1, . . . , an) for ai ∈ UA.
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Polynomial Orderings

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA.

(Otherwise, A would not be a Σ-algebra.)
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Polynomial Orderings

Requirement 2:

fA must be monotone (w.r.t. �).

From now on:

UA = { n ∈ N | n ≥ 2 }.

If f /0 ∈ Ω, then Pf is a constant ≥ 2.

If f /n ∈ Ω with n ≥ 1, then Pf is a polynomial P(X1, . . . ,Xn),

such that every Xi occurs in some monomial with exponent

at least 1 and non-zero coefficient.

⇒ Requirements 1 and 2 are satisfied.
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Polynomial Orderings

The mapping from function symbols to polynomials can be

extended to terms:

A term t containing the variables x1, . . . , xn

yields a polynomial Pt with indeterminates X1, . . . ,Xn

(where Xi corresponds to β(xi )).

Example:

Ω = {a/0, f /1, g/3},

UA = { n ∈ N | n ≥ 2 },

Pa = 3, Pf (X1) = X 2
1 , Pg (X1,X2,X3) = X1 + X2X3.

Let t = g(f (a), f (x), y), then Pt(X ,Y ) = 9 + X 2Y .
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Polynomial Orderings

If P,Q are polynomials in N[X1, . . . ,Xn], we write P > Q

if P(a1, . . . , an) > Q(a1, . . . , an) for all a1, . . . , an ∈ UA.

Clearly, l �A r iff Pl > Pr .

Question: Can we check Pl > Pr automatically?
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Polynomial Orderings

Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . ,Xn] with integer

coefficients, is P = 0 for some n-tuple of natural numbers?

Theorem 3.27:

Hilbert’s 10th Problem is undecidable.

Proposition 3.28:

Given a polynomial interpretation and two terms l , r , it is

undecidable whether Pl > Pr .

Proof:

By reduction of Hilbert’s 10th Problem.
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Polynomial Orderings

One possible solution:

Test whether Pl(a1, . . . , an) > Pr (a1, . . . , an)

for all a1, . . . , an ∈ { x ∈ R | x ≥ 2 }.

This is decidable (but very slow).

Since UA ⊆ { x ∈ R | x ≥ 2 }, it implies Pl > Pr .
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Polynomial Orderings

Another solution (Ben Cherifa and Lescanne):

Consider the difference Pl (X1, . . . ,Xn) − Pr (X1, . . . ,Xn) as

a polynomial with real coefficients and apply the following

inference system to it to show that it is positive for all

a1, . . . , an ∈ UA:
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Polynomial Orderings

P ⇒BCL >,

if P contains at least one monomial with a positive coefficient

and no monomial with a negative coefficient.

P + c X
p1

1 · · ·X
pn
n − d X

q1

1 · · ·X
qn
n ⇒BCL P + c ′ X

p1

1 . . . X pn
n ,

if c, d > 0, pi ≥ qi for all i ,

and c ′ = c − d · 2(q1−p1)+···+(qn−pn) ≥ 0.

P + c X
p1

1 · · ·X
pn
n − d X

q1

1 · · ·X
qn
n ⇒BCL P − d ′ X

q1

1 . . . X qn
n ,

if c, d > 0, pi ≥ qi for all i ,

and d ′ = d − c · 2(p1−q1)+···+(pn−qn) > 0.
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Polynomial Orderings

Lemma 3.29:

If P ⇒BCL P ′, then P(a1, . . . , an) ≥ P ′(a1, . . . , an) for all

a1, . . . , an ∈ UA.

Proof:

Follows from the fact that ai ∈ UA implies ai ≥ 2.

Proposition 3.30:

If P ⇒+
BCL >, then P(a1, . . . , an) > 0 for all a1, . . . , an ∈ UA.
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