3.4 Critical Pairs

Showing local confluence (Sketch):

Problem: If t; «fg ty —F tp, does there exist a term s such
that t; —>>E S <—>E ty ?
If the two rewrite steps happen in different subtrees (disjoint

redexes): yes.

If the two rewrite steps happen below each other (overlap at

or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable

position: needs further investigation.



Critical Pairs

Showing local confluence (Sketch):

Question:
Are there rewrite rules { — r and b — r such that some

subterm /1 /p and /, have a common instance (1 /p)o; = hoy?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have

common variables, then only a single substitution is necessary:
(/1/p)0' — /20'.

Further observation:
The mgu of /;/p and kL subsumes all unifiers o of 1 /p and f.



Critical Pairs

Let [; — r; (i = 1,2) be two rewrite rules in a TRS R
whose variables have been renamed such that

var({h, n}) Nvar({h, n}) = 0.

Let p € pos(/;) be a position such that /;/p is not a variable
and o is an mgu of /;/p and k.

Then o «— ho — (ho)[rno],.

(no, (ho)[ro]p,) is called a critical pair of R.

The critical pair is joinable (or: converges), if rno [r (ho)[ro],.



Critical Pairs

Theorem 3.18 ( “Critical Pair Theorem™):
A TRS R is locally confluent if and only if all its critical pairs
are joinable.

Proof:
“only if": obvious, since joinability of a critical pair is a special

case of local confluence.



Critical Pairs

Proof:

“if": Suppose s rewrites to t; and t, using rewrite rules

l; — r; € R at positions p; € pos(s), where i =1, 2.

Without loss of generality, we can assume that the two rules are

variable disjoint, hence s/p; = ;68 and t; = s[r;0],..

We distinguish between two cases: Either p; and py are in

disjoint subtrees (p1 || p2), or one is a prefix of the other

(w.o.l.o.g., p1 < p2).



Critical Pairs

Case 1: p1 || p2.

Then s = s[h0],,[h0],,,
and therefore t; = s[r10],,[R0],, and to = s[h0],,[r0],,.

Let tg = S[I’le]pl[l’Qe]m.
Then clearly t; —r tp using b — r» and t, —g tg using | — n.



Critical Pairs

Case 2: p1 < po.
Case 2.1: p» = p1q1 g2, where l1/q; is some variable x.

In other words, the second rewrite step takes place at or below
a variable in the first rule. Suppose that x occurs m times in /;
and n times in r; (where m > 1 and n > 0).

Then t; —% ty by applying b — r» at all positions p; ¢’ go,
where g’ is a position of x in ry.

Conversely, to, —% tp by applying b — r» at all positions
p1qq>, where g is a position of x in /; different from ¢g;, and
by applying 1 — r1 at p; with the substitution 6/, where
0" = O[x — (x0)[r20]4,]-
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Case 2.2: po = p1 p, where p is a non-variable position of /;.

Then s/py = h6 and s/p> = (s/p1)/p = (h0)/p = (L/p)b,
so 6 is a unifier of /, and h/p.

Let o be the mgu of L and £ /p,

then 0 = 7 o0 and (no,

(ho)|ro]p) is a critical pair.

By assumption, it is joinable, so o —5 v <% (ho)|[no],.

Consequently, t; = s[r 6]

ty = s[nl]y, = s[(h0)

s|((ho)lrolp)T]l, —F s

p = S|not)y, —% s[vt], and

ROplp, = sl(hoT)lnot]ply =

:VT]Pl :

This completes the proof of the Critical Pair Theorem.



Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of)
itself must be considered — except if the overlap is at the root

(i.e., p=-c¢).



Critical Pairs

Corollary 3.19:
A terminating TRS R is confluent if and only if all its critical
pairs are joinable.

Proof:
By Newman's Lemma and the Critical Pair Theorem.
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Critical Pairs

Corollary 3.20:
For a finite terminating TRS, confluence is decidable.

Proof:

For every pair of rules and every non-variable position in the first

rule there is at most one critical pair (uq, us).

Reduce every u; to some normal form uf. If ui = uj for
every critical pair, then R is confluent, otherwise there is some

non-confluent situation uf <% 11 «—r s — R Uy —% US.
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3.5 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions
starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition 3.21:
Both termination problems for TRSs are undecidable in general.

Proof:

Encode Turing machines using rewrite rules and reduce the

(uniform) halting problems for TMs to the termination problems
for TRSs.
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Termination

Consequence:

Decidable criteria for termination are not complete.
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Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at
finitely many rules | — r € R, rather than at infinitely many

possible replacement steps s —g s’.
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Reduction Orderings

A binary relation T over Tx(X) is called

compatible with X2-operations,

if s 75" implies f(ty,...,s,...,ty) O f(t1,...,s", ..., tn)
for all f/ne€ Q and s,s’, t; € Tx(X).

Lemma 3.22:
The relation 71 is compatible with 2 -operations, if and only if

s 1 s’ implies t[s], O t[s"],
for all s,s’,t € Tx(X) and p € pos(t).

(compatible with X -operations = compatible with contexts)
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Reduction Orderings

A binary relation 33 over Ty (X) is called stable under
substitutions, if s 71 s’ implies so 1 s’o
for all s,s” € Tg(X) and substitutions o.
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Reduction Orderings

A binary relation T is called a rewrite relation, if it is compatible
with 2-operations and stable under substitutions.

Example: If R is a TRS, then —§ is a rewrite relation.

A strict partial ordering over Tx(X) that is a rewrite relation is

called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.
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Reduction Orderings

Theorem 3.23:
A TRS R terminates if and only if there exists a reduction
ordering > such that / > r for every rule | - r € R.

Proof:
“if": s =g s’ if and only if s = t[lo],, s’ = t[ro],.
If | >~ r, then lo > ro and therefore t[lo], > t[ro],.
This implies —g C .

Since > is a well-founded ordering, — R is terminating.

“only if": Define > = —>J,5.

If — R is terminating, then > is a reduction ordering.
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The Interpretation Method

Proving termination by interpretation:

Let A be a 2-algebra;

let > be a well-founded strict partial ordering on its universe.

Define the ordering -4 over Tx(X) by s > 4 t iff
A(B)(s) = A(B)(t) for all assignments 3 : X — Uy4.

Is > 4 a reduction ordering?
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The Interpretation Method

Lemma 3.24:
> 4 Is stable under substitutions.

Proof:

Let s = 4 s/, that is,

A(B)(s) = A(B)(s’) for all assignments 5: X — Uy4.
Let 0 be a substitution. We have to show that
A(7)(so) = A(v)(s’o) for all assignments v : X — Uy4.
Choose 5 = v o g, then by the substitution lemma,
A(y)(so) = A(B)(s) > A(B)(s") = A(7)(s0).

Therefore so = 4 s’o.
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The Interpretation Method

A function F : U} — U4 is called monotone (w.r.t. ),
if a = a’ implies

F(bi,..., a, ..., b,) = F(bs, ..., a, ..., bn)

for all a,a’, b; € Uy.
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The Interpretation Method

Lemma 3.25:
If the interpretation f4 of every function symbol f is monotone
w.r.t. >, then > 4 I1s compatible with > -operations.

Proof:

Let s > s/, that is, A(3)(s) = A(B)(s") forall B: X — Ux.
Let 3: X — U4 be an arbitrary assignment.

Then A(B)(f(ty,..., S, v, th))

— F4(AB)(8). . AB)(S). . AB)(tn))

= fA(A(B)(t1), ..., A(B)(s’), ..., A(B)(tn))
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The Interpretation Method

Theorem 3.26:

If the interpretation f4 of every function symbol f is monotone
w.r.t. >, then > 4 Is a reduction ordering.

Proof:

By the previous two lemmas, > 4 is a rewrite relation.

If there were an infinite chain s; =4 s =4 ..., then it would
correspond to an infinite chain A(3)(s1) = A(5)(s2) > ...
(with 8 chosen arbitrarily).

Thus = 4 is well-founded.

Irreflexivity and transitivity are proved similarly.
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Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set U4 is some subset of the natural numbers.

To every n-ary function symbol f associate a

polynomial Ps(Xy,..., X,) € N[Xq,..., X}]

with coefficients in N and indeterminates X, ..., X,.
Then define f4(a1,...,a,) = Pr(a1,...,a,) for a; € U4,
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Polynomial Orderings

Requirement 1:

If a{,..., an € Uy, then fa(ay, ..., an) € Uy.

(Otherwise, A would not be a X-algebra.)
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Polynomial Orderings

Requirement 2:

fa must be monotone (w.r.t. >).

From now on:
Us={neN|n>2}.
If £/0 € Q, then Py is a constant > 2.

If f/n € Q with n > 1, then Py is a polynomial P( Xy, ..., X,),
such that every X; occurs in some monomial with exponent

at least 1 and non-zero coefficient.

= Requirements 1 and 2 are satisfied.

26



Polynomial Orderings

The mapping from function symbols to polynomials can be
extended to terms:

A term t containing the variables xq, ..., X,

yields a polynomial P; with indeterminates X, ..., X
(where X; corresponds to ((x;)).

Example:

1 =1{a/0, f/1, g/3},
Us={neN|n>2},

P, =3, Pf(Xl) :X12, Pg(Xl,XQ,Xg,) :Xl—I—X2X3.
Let t = g(f(a), f(x), y), then P.(X,Y) =9+ X?Y.
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Polynomial Orderings

Clearly, | = 4 r iff P, > P,.

Question: Can we check P, > P, automatically?
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Polynomial Orderings

Hilbert's 10th Problem:

Given a polynomial P € Z[ X, ..., X,] with integer
coefficients, is P = 0 for some n-tuple of natural numbers?

Theorem 3.27:
Hilbert's 10th Problem is undecidable.

Proposition 3.28:
Given a polynomial interpretation and two terms /, r, it is
undecidable whether P, > P,.

Proof:
By reduction of Hilbert's 10th Problem.
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Polynomial Orderings

One possible solution:

This is decidable (but very slow).
Since U4y C{x€eR|x>2}, it implies P, > P,.
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Polynomial Orderings

Another solution (Ben Cherifa and Lescanne):

Consider the difference Pj(Xy,..., X,) — P(Xy,..., X,) as
a polynomial with real coefficients and apply the following
inference system to it to show that it is positive for all
ai,...,an € Uy:
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Polynomial Orderings

P =pc T,

if P contains at least one monomial with a positive coefficient

and no monomial with a negative coefficient.

P+cX - XPr—dX™ - X9 =pc, P+ X, . XPr,

n

if c,d >0, p; > g; for all i,
and C, — C — d . 2(q1_P1)‘|‘"'+(qn_Pn) Z O
P—I—Clel---X,f,’” —Xmq1 - X" =pcrL P—d'qul...X,?”,

if c,d >0, p; > g; for all i,
and d’ = d — ¢ - 2p—a@)++(pn—an) < (.

32



Polynomial Orderings

Lemma 3.29:
If P =pgc. P’, then P(ay,..., an) > P'(ay,..., an) for all

Proof:
Follows from the fact that a; € U4 implies a; > 2.

Proposition 3.30:

If P=2%- T, then P(ay,..., a,) >0 forall ay,..., a, € Uy.
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