Advanced C Programming

Exam, Competition, Code Review

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach

weidenbach@mpi-inf.mpg.de

Winter Term 2008/09

I COMPUTER SCIENCE

Final Exam

Assignemnts

Declarations, Bindings, ... (multiple choice)

Find Errors in Code Fragments

Improve Code Fragments

Profiling, Makefiles, ...

Bit Operations

Know the Compiler

Code/Data Structure Design (possibly related to SAT)

No a ks wibb =

Out of Scope

1. Open MP
2. Syntax Checks

Advanced C SAT Competition

Problems

2bitmax_6.cnf, 252 vars, 767 clauses, satisfiable
qg2-08.cnf, 512 vars, 148957 clauses, satisfiable
qg3-09.cnf, 729 vars, 16732 clauses, satisfiable
uf250-01.cnf, 250 vars, 1065 clauses, satisfiable
uf250-013.cnf, 250 vars, 1065 clauses, satisfiable
uuf250-01.cnf, 250 vars, 1065 clauses, unsatisfiable
uuf250-013.cnf, 250 vars, 1065 clauses, unsatisfiable

No a ks wib =

Out of Scope

» Medium hard unsatisfiable problems.

» Competition problems from 2008.

Advanced C SAT Competition: Setup

Parameters

» 300 sec per problem

> 41 SAT programs entered

» all programs compiled with -O3

> most recent version taken

» hardware: 3.16GHz Xeon, 6MB Cache, 16GB RAM, 4 CPUs, 2 Jobs

Advanced C SAT Competition: Results

Statistics

16 programs crashed on at least one example
3 programs produced wrong results

29 programs could not solve any problem

4 programs solved one problem

2 programs solved two problems

2 programs solved three problems

1 program solved four problems

1 program solved five problems

1 program solved six problems

vV V.V VvV VvV VvV VvV VvV VY

1 program solved seven problems

Advanced C SAT Competition: Comparison

Timing
Program 2bitmax qg2 qg3 uf-1 uf-13
SAT 4483 126.10 3.95 17.07 32.23
PROP 7.14 237 1471 37.99 tout
Mini 0.00 323 299 005 171

uuf-1
88.62
tout
1.99

uuf-13
45.71
tout
2.11

Merging Replacement Resolution

Tricks

Db =

link complementary literals
consider clause length

sort literals

do fingerprint of first n-atoms

Examplel: Queues

Queues Continued

void* queue_Get (QUEUE q)
/% s % ok ok sk sk ok sk ok ok ok sk sk sk sk ok ok sk sk sk sk sk ok ok sk ok sk K ok ok sk ok sk sk ok ok ok sk sk ok ok ok ok ok ok K ok K K
INPUT: A queue.
RETURNS: The first element is removed from
the queue a returned.
NOTE: Should only be called on a nonempty queue.
sk 3k 3k ok sk ok K ok ok ok ok sk K K ok ok ok sk sk K ok ok sk ok sk ok ok ok ok ok ok 3k K K ok ok ok sk ok ok ok ok sk ok K ok ok ok ok k % /

{
void* res = g->queuel[q->first];

ASSERT (! queue_IsEmpty (q));

if (q->first == q->last) { /*last element*/
q->last = -1; /*we are empty */

} else {
q->first = (q->first+1)) q->size;

}

return res;

Example2: DPLL

int solver_Solve (SOLVER sol)
{ int unit_literal;
if (sol->contradiction) {
sol->contradiction = 0;
return 0;}
if (clause_AllTrue(sol->set)) return 1;
else if (clause_SomeFalse(sol->set)) return O;
else {
unit_literal = clause_FindUnitLiteral (sol->set);
if (unit_literal) {
solver_Decide(sol, unit_literal);
return solver_Solve(sol);
} else { int var, pos;
var = solver_UndefinedVar (sol);
pos = solver_Decide(sol, -var);
if (solver_Solve(sol)) return 1;
else {
solver_Backtrack(sol, pos);
solver_Decide(sol, var);
return solver_Solve(sol);
3

return 0;

