
Advanced C Programming
Winter Term 2008/09

Guest Lecture by Markus Thiele <thiele@st.cs.uni-sb.de>

Lecture 14:

Parallel Programming with OpenMP

Motivation: Why parallelize?

 Tact frequencies are reaching their limit

 Multi-core systems are becoming more and more

common

 Automatic parallelization is still in its infancy

“The free lunch is over.”
– Herb Sutter (2005)

Options for Parallelization

 Platform specific APIs

 POSIX Threads

 …

 Generally provide:

 Forking into threads (often functions as threads)

 Joining threads

 Synchronization with Mutexes, Semaphores, etc.

Our focus today: OpenMP

 Cross-platform API for C/C++ and Fortran

 In development since about 1997

 Open standard

 Widely supported (in recent compiler versions)

 GNU (GCC 4.2 and higher)

 Microsoft (Visual C++ 2005 and newer)

 Intel, Sun, IBM, etc.

 High-level API

http://www.OpenMP.org/

Experience Report: OpenMP

for(j=start;j<len;j++)
data[j] = (Qfloat)(y[i]*y[j]*

(this->*kernel_function)(i,j));

for(i=0;i<l;i++)
kvalue[i] =

Kernel::k_function(x,model->SV[i],model->param);

#pragma omp parallel for private(j)

#pragma omp parallel for private(i)

 Parallelizing libsvm

…

…

…

 Effect: 2 to 5 times faster on 16 cores

Integration

 Compiler Feature

gcc –fopenmp …

 Directives

#pragma omp …

 Library

#include <omp.h>

 Conditional Compilation

_OPENMP macro

 Environment Variables

e.g. OMP_NUM_THREADS

Computation Model

 Fork-and-Join model

Master Thread

Worker 1

Worker 2

Fork Join

Parallel Section

“Team” of Threads

Team Size

 How many threads are created?

 By default as many as there are cores

 Can be overridden by

 OMP_NUM_THREADS environment variable

 omp_set_num_threads() library function

 num_threads clause in a specific directive

Memory Model

 Shared memory with thread local storage

Shared Memory

Thread 1 Thread 2 Thread N…

Private Memory 1 Private Memory 2 Private Memory N…

Forking

 Creates a team of threads, executing the following code
block (i.e. the exact same code)

 Clauses change behavior

 Block may contain synchronization directives

 Block may contain work sharing constructs to distribute
work over threads in a specific way

 Implicit join at the end of the block

#pragma omp parallel [<clauses>]
{

…
}

Clauses: Parallelism

 Normally, the default number of threads (or the number

specified by the environment variable OMP_NUM_THREADS)

is created and run in parallel

 Clauses may change this:

 num_threads(<integer expression>)
The number of threads created will correspond to the

number the given expression evaluates to.

 if(<boolean expression>)
If the given expression evaluates to false, the block will be

executed sequentially in the master thread only

Clauses: Storage Association

 By default, all variables are shared among threads

 Clauses may change this:

 private(<list of variables>)
Each thread will operate on a private version of the listed

variables (note that the value of the variable is undefined on

entry and exit)

 Shared(<list of variables>)
All threads will explicitly (this is the default) operate on the

same original version of the variable

 default({shared|none})
Changes the default storage association; If none is specified,

all used variables must explicitly be declared private or

shared.

Clauses: Private Variables

 Normally, private versions of variables are uninitialized

and the value of the original variable at the end of the

block is undefined

 Variations of the private clause may change this:

 firstprivate(<list of variables>)
Listed variables are private and are initialized with the

value of the original object before entry

 lastprivate(<list of variables>)
Listed variables are private and at the end of the block,

the original object will receive the value of the private

version from the sequentially last operation

Clauses: Shared Variables

 Normally, shared variables are subject to race conditions

 The reduction clause avoids race conditions for

certain computations:

 reduction(<operator>: <list of variables>)
If the listed variables are only updated with allowed

operations, code is generated to avoid race conditions

 Allowed operations (for variable x):

x = x <operator> <expression>
x = <expression> <operator> x
x++, ++x, x--, --x
x <operator>= <expression>

 The value of x is undefined until the end of the block

Synchronization Directives

 #pragma omp barrier
Threads will sleep when reaching the barrier until all
other threads have reached the barrier

 #pragma omp critical
{ … }

The critical section will be executed by all threads, but
only by one thread at a time

 #pragma omp atomic
<expression statement>

Light weight alternative to make a single memory update
atomic (executed without interruption by another thread)

Synchronization Directives

 #pragma omp flush [<list of variables>]
Make sure all threads have a consistent view of the listed

variables (or all shared variables, if none are listed)

 #pragma omp ordered
{ … }

Preserve apparent sequential execution order inside the

given block (this is very inefficient, as it does not allow

much actual parallelism)

Work Sharing: Single Execution

 #pragma omp single [<clauses>]
{ … }

The given block is only executed once by a single thread
(there is no implicit barrier, so other threads will move on
past the block as soon as they’re ready)

 #pragma omp master [<clauses>]
{ … }

The given block is only executed once by the master
thread (again with no implicit barrier)

 These directives support the Storage Association clauses
as described before

Work Sharing: Sections

 #pragma omp sections [<clauses>]
{

…
#pragma omp section
…
#pragma omp section
…

}

 Each section (separated by the section directive) is
executed exactly once by one thread (left-over threads
wait)

 There is an implicit barrier at the end of the sections
block, which may be lifted with the nowait clause

Work Sharing: Loops

 #pragma omp for [<clauses>]

<for loop>

 #pragma omp do [<clauses>]

<do loop>

 The loop iterations will be executed in parallel by all

available threads

 There is an implicit barrier at the end of the sections

block, which may be lifted with the nowait clause

Work Sharing: Shorter Notation

 #pragma omp parallel for [<clauses>]
<for loop>

… is equivalent to …

 #pragma omp parallel [<clauses>]
{

#pragma omp for [<clauses>]
<for loop>

}

 The same shorter notation may be applied to do and

sections blocks

Load Balancing

 The schedule clause affects the way loop iterations are

assigned to threads in a team

 schedule({static|dynamic|guided}[,<chunk size>])

schedule(runtime)

static Each thread is statically assigned a chunk of iterations (if no chunk

size is specified, the iteration space is divided approximately equally)

round-robin

dynamic Chunks of iterations are assigned to threads that are waiting for work

and every thread waits for a new chunk when its work is done

guided Behaves like dynamic, but the chunk size starts out at an

approximately even distribution and then exponentially decreases

down to the specified chunk size (or 1).

runtime The schedule to use is read from the OMP_SCHEDULE environment

variable

OpenMP Runtime Library

 Provides information about the current thread and the
current team of threads
 omp_get_thread_num() – returns the current thread

ID (the master thread is always 0)
 omp_get_num_threads() – returns the current

number of threads to be used by a team
 omp_get_num_procs() – returns the maximum

number of available processors

 omp_in_parallel() – returns true if currently in
parallel region, false otherwise

 omp_get_dynamic() – returns true if dynamic thread
adjustment is enabled

 omp_get_wtime() – returns the “wall clock” time

 omp_get_wtick() – returns the number of seconds
between clock ticks

OpenMP Runtime Library

 Allows to change some settings

 omp_set_num_threads() – sets the number of threads

to be used by a team

 omp_set_dynamic() – enable or disable dynamic

thread adjustment (this can also be done with the

environment variable OMP_DYNAMIC)

 Provides traditional locking mechanisms

 omp_init_lock(), omp_destroy_lock(),

omp_set_lock(), omp_unset_lock(),

omp_test_lock()

More Information

 For much more information about OpenMP, visit the

OpenMP website at…

http://www.OpenMP.org/

Conclusions

 Advantages

 Simple and intuitive

 High level (hides many ugly details)

 Can be incrementally applied to existing code

 Can easily be enabled and disabled

 Disadvantages

 Requires compiler support (recent compiler versions)

 Limited to a certain memory architecture

 Limited fine-grained control

 Limited error handling

Lecture 14:

Parallel Programming with OpenMP

Thank you for your attention!

Questions? Comments? Suggestions?

