Advanced C Programming

Compilers

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

20.01.2009

SAARLAND

l l I I UNIVERSITY %
I R

COMPUTER SCIENCE




Contents

Overview
Optimizations

Program Representations
Abstract Syntax Trees
Control-Flow Graphs
Some Simple Optimizations
Dead Code Elimination
Constant Folding
Static Single Assignment
Scalar Variables, Memory, and State

Summary



Goals

v

Get an impression of what compilers can do

v

Write programs in a way such that compilers can optimize them well

v

Get an impression of what compilers cannot do

v

Do some important optimizations by hand



Compilers

Architecture

“Middle End” Back End

» Syntactic / semantic
analysis of the input
program

» Dependent on the
programming language

> Heart of the compiler

> Independent from
language and target
architecture

» most optimizations
implemented here

>

>

Transform the program
to machine code

Dependent on target
architecture

Implement resource
constraints of
machine/runtime-
system



Optimizations

» Optimization is the wrong word
> It is a mathematical term describing the task of solving an
optimization problem
» Compiler “optimizations” merely transform the program
> Should thus be called transformations
> We call them optimizations anyway ®
» Many interesting optimizations are NP-complete or uncomputable
» Since compilation speed also matters:
> Much in compilers is about finding fast heuristics for extremely
difficult problems
» Challenging engineering task:
> Very diverse inputs
» Complex data structures
> Complex invariants
> No tolerance of failure: Must work for every input



Optimizations

» Compiler writers have a mathematically provable job guarantee

» The full employment theorem



Optimizations

» Compiler writers have a mathematically provable job guarantee

» The full employment theorem

Given: A program P that does not emit anything
Wanted: The smallest binary for P

Theorem
There exists no compiler that can produce such a binary for every P



Optimizations

» Compiler writers have a mathematically provable job guarantee

» The full employment theorem

Given: A program P that does not emit anything
Wanted: The smallest binary for P

Theorem

There exists no compiler that can produce such a binary for every P

Proof.

If P does not terminate, its smallest implementation is
L1: jmp L1

To this end, the compiler must determine whether P holds.



Program Representations

» Compilers process data like any other program
» However, the data they process are programs

» To get an idea of what compilers can do, we need to understand
how they represent programs

> Every “end” uses its own intermediate representation (IR)

» The effectiveness of many optimizations are dependent on the
degree of abstraction and the shape of the IR

» Most compilers use < 4 IRs



Program Representations

Front End

vV v v v

Abstract Syntax Tree (AST)

Program represented by syntactical structure
Basically a large tree and a name table
Nodes represent type of structural entity:
Function, Statement, Operator, ...

Mainly used for:

> Name resolution

> Type checking

» High-level transformations
(loop transformations)



Program Representation

AST

Source

int sum_upto(int n) {
int i, res = 0;
for (i = 0; i < n; ++i)
res += ij;
return res;

AST

FUNCTION_DECL name:sum_upto
ARG name:n type:int
BODY
STATEMENT_LIST
VAR_DECL name:i type:int
FOR_LOOP
ASSIGN
VAR_EXPR Name:i
CONST_EXPR Value:0
CMP_EXPR 0Op:<
VAR_EXPR Name:i
VAR_EXPR Name:n



Program Representations
“Middle” to Back End

» Control-Flow Graphs (CFG)

> High-level control structures (for, if, ...) gone
» Nodes of the CFG: Basic Blocks
> Edges represent flow of control

» Instructions in a basic block are in “triple form”
> Each instruction has the form

z — op(x1,...,Xn) Often: n=2

> No expression trees anymore
> Notion of a statement no longer present
> z,x1,...,X, scalar variables = machine types

Definition (Basic Block)

A basic block B is a maximal sequence of instructions /1, ..., I, for which

1. [; is a control-flow predecessor of /1
2. If I; is executed so is /;



Program Representation
CFG/Tripe-Code

Source Tripe-code CFG
int sum_upto(int n) { i — L
int i, r = 0; r < cnst O
for (i = 0; i < mn; ++i) i < cnst O
r += 1ij;
return r; ‘l‘ |
}
b — cmplt(i,n)
cond(b, T, F)
T/ \\ F
r «— add(r,i) ret(r)
i — add(i,1)

L



Program Representations
Back End

» Nowadays similar to middle end:

» CFGs with machine instructions
> Registers instead of variables

» At the very end, a list of assembly instructions is generated
» CFG is flattened
» Flattening important:
> Use fall-throughs = safe jump instructions
> Arrange blocks carefully to aid branch prediction
» Other “minor” stuff to care about:

> Instruction encoding
> Alignment

» Data Layout
>



Contents

Program Representations
Abstract Syntax Trees
Control-Flow Graphs
Some Simple Optimizations
Dead Code Elimination
Constant Folding
Static Single Assignment
Scalar Variables, Memory, and State



Dead Code Elimination

» Eliminate Code which has no effect
» Must not be written by the user

» Can also result as “garbage” from other transformation

X — - » Definition of x in right
Z — - branch is dead

» the value computed there
will never be used

z—op(x,...)
\ » How to find dead

computations?

» Data-flow analysis



Constant Folding

» Compute constant expressions during compile time

x < cnst 0

/ \
y < cnst 10 x « call()
z « add(y, x) /

~

ret(x)

v

Addition in left block can be
optimized to

z «— cnst 10

The use of x in the bottom
cannot

X has unknown contents
when coming from the right
branch

Again, use data-flow analysis
to determine whether
variable has known constant
contents



Static Single Assignment (SSA)

» Performing data-flow analyses all the time is laborious

» Each time the program changes, analysis information has to be
updated

» Both transformations needed following information:

Reaching Definitions

For a use of a variable x, which are the definitions of x that can write the
value read at the use of x

» Solution:

» Encode this directly in the IR
» Allow every variable to only have one instruction that writes its value
> At each use of that variable there is exactly one definition reaching

> Variables and program points are now identical



Dead Code Elimination
Revisited — SSA

non SSA SSA o
TP
X — Z e e
Z <—
z — op(x,...)
ret(z) ret(zr)

» Which z is used at the return?



Dead Code Elimination
Revisited — SSA

SSA

non SSA

Xy < -
Zy — -

z — op(x,...)

vV v v v

Which z is used at the return?

z3 «— (22, 21)
ret(z3)

Use ¢-functions to propagate SSA variables over control flow

Each variable which has no use is dead (x»)
Use that criterion transitively




Constant Folding
Revisited — SSA

non SSA

x «— cnst 0

PN

y < cnst 10 x « call()
z « add(y, x)
~N

ret(x)

SSA
x; < cnst 0
e ~
y1 < cnst 10 xp «— call()
71 «— add(y1,x1)
N
X3« P(x1,x2)
— ret(x3)

» Each variable has only one definition
» Either the value at the definition was constant or not

> we see that x3 is not constant because not all arguments of the ¢

are constant



SSA

. is functional programming (Kelsey 1995)

start
(a, b) < start fun start a b =if b < a
then f1 a b
f1 f2
’cp—a—bHcQHO‘ fun f1 a b = let c = b-a
in f3 ¢
£3
C3 <—¢(C17C2) fun £2 = £f3 0
fun £f3 ¢ =c

:

return c3

» Each block is a function
» In FP each variable can be bind only once (here we go!)

» Control flow modeled by function evaluations



Contents

Program Representations
Abstract Syntax Trees
Control-Flow Graphs
Some Simple Optimizations
Dead Code Elimination
Constant Folding
Static Single Assignment
Scalar Variables, Memory, and State

20



Scalar Variables, Memory, and State

>

v

vV Yy vy

Up to now all variables are “scalar”:

> resemble machine types (int, float, double), no arrays or structs
And all variables were “alias-free”:

> each variable was only accessible by a single name
Every modification of the variable happened through that name
Under SSA this is equivalent to the variable concept in FP
In FP there is no difference between the name and the variable

Scalar, alias-free variables are good for code generation
» They can be put into a register



Scalar Variables, Memory, and State

>

vV Yy vy

vV v.v. v .Yy

Up to now all variables are “scalar”:

> resemble machine types (int, float, double), no arrays or structs
And all variables were “alias-free”:

> each variable was only accessible by a single name
Every modification of the variable happened through that name
Under SSA this is equivalent to the variable concept in FP
In FP there is no difference between the name and the variable

Scalar, alias-free variables are good for code generation
» They can be put into a register

What about non-scalar variables?

What about variables referenced by pointers?

We are able to reference the same variable through different names
In imperative programming names and variables are not the same

This makes life much harder for the compiler



Scalar Variables, Memory, and State

How are non-scalar variables implemented?

> Arrays
> Arrays define potentially aliased variables
» Each array element can be accessed by an indexing expression
> The value of the index expression might not be known at compile
time
> To disambiguate two accesses a[i] and a[j], need to prove i # j

» Structs

> ... are simpler
> Unless the address of an element is taken, they can be “scalarized”

int foo(void) int foo(void)
vec3_t vec; float x, y, z;



Scalar Variables, Memory, and State

Aliased Variables

int global_var;

int foo(int *p) {
global_var = 2;
*p = 3;
return global_var;

vV v . vY

We cannot optimize to

return 2;

p might point to
global_var

global_var is
potentially aliased

How can we find out?
Look at all callers of foo
and the passed argument

Thus: probably also all the
callers of the callers and so
on

What, if we do not know all
the callers

23



Scalar Variables, Memory,

Aliased Variables

int global_var;

int foo(int *p) {
global_var = 2;
*p = 3;
return global_var;

and State

We can help the compiler

If the address of global_var
is never taken

and we defined it as static

> it can only be modified by

functions in the current file

And never through a second
name

It cannot be aliased

Be as precise as possible
with your declarations

24



Scalar Variables, Memory, and State

» We “implement” aliased variables by a global memory
(Of course it is the other way around ©)

» This memory belongs to the state

» The main difference between functional and imperative programming
is the presence of state

» What else belongs to the state is a question of the programming
language's semantics

> How that state is updated is (mostly) decided by the memory model

» For correct compilation, the visible effects on the state and their
order have to be preserved

» Both are defined in the PL’s semantics

» How do we model the state in the IR?

25



Scalar Variables, Memory, and State

Representation of Memory

» The memory is also represented as an SSA variable
» Each load and store reads takes a memory variable and gives back a

new one
¢y «+— cnst 2
¢ < cnst 3
M; — getarg(0)
a «— symcnst global_var
M, «— store(My, a, ¢1)
int global_var; p = getarg(l)
int foo(int *p) { Ms — Store(/\/lz,p, C2)
global_var = 2; (/\/]4’r) — load(/\/l3,a)

*P = 3; ret(My,r)
return global_var;

» Memory is treated functionally

» Similar to the concept of a monad, cf. Haskell

26



Scalar Variables, Memory, and State

Representation of Memory

v

We can also have multiple memory variables!

v

They must however be implemented with the single memory we have

v

We must make sure that they represent pairwise disjoint variables

M, «— store(My,p,v)
M3 — store(My, q, w)

does only work if p # g
Benefit:

> Variables may be scalarized in some regions of the code
» order of memory accesses can be changed
1= important for code generation

v

o
N



Scalar Variables, Memory, and State

Points-to Analysis

v

Subdivision of memory needs results of points-to analysis

v

For each use of a pointer determine an (over-approximated) set of
variables the pointer might point to

v

One of the hardest analyses

> interprocedural (whole-program)
> long runtime, large memory consumption

Do not count on it

v

v

Many compilers make precision sacrifices to safe compilation time



Summary

vV vy Vv VY

Scalar, alias-free variables are good!

Many analyses are easy for them

Most optimizations only work on scalar, alias-free variables
They can be allocated to a processor register

Having many scalar variables is no problem

> The register allocator will decide which ones to spill where

Know that accesses to non-scalar variables might result in memory
accesses

Always program as scalar as possible
Always convey as much information as possible

Do not overly rely on points-to analysis



Being Scalar “Best Practices”

Arrays
Prefer Over
typedef struct { typedef float vec_t [4];
float x, y, z, w;
} vec_t;

» Compiler might have trouble analysing indexing expressions
> a.x is much clearer

» Can be scalarized more easily

| 4

Some compilers do not consider arrays for scalarization



Being Scalar “Best Practices”

Arrays
Prefer Over
int x = pl[il; int q = p + i;
int y = p[i + 11; int x = *p++;
int z = pl[i + 2]; int y = *p++;
int z = *p++;

> Array base pointer stays the same
> Inequality of indexing often easier to analyze than the pointer update

» Compiler will do that transformation itself if he knows that he can
save a register



Being Scalar “Best Practices”

Avoid pointer dereferencing

Prefer Over
void isqrt(unsigned long a, void isqrt(unsigned long a,
unsigned long *q, unsigned long *q,
unsigned long *r) unsigned long *r)
{ {
unsigned long qq, rr; *q = a;
qq = a; if (a > 0) {
if (a > 0) { while (*g>(*r=a/ *q)) {
while (ggq>(rr=a/qq)) { *q = (*xq + *r) >> 1;
Qq = (qq + rr) >> 1 }
} }
} X¥r = a - *q * *q;
rr = a - qq * qq; by
*q = q9;
*r = rr;
}

The left version makes explicit that we assume q # r
In C99 you could use restrict

But then you rely on the compiler to do it right

If all these memory accesses stay, performance is worse
Treat memory accesses like reading from file

vvyVvyVvVvyy



	Overview
	Optimizations

	Program Representations
	Abstract Syntax Trees
	Control-Flow Graphs
	Some Simple Optimizations
	Static Single Assignment
	Scalar Variables, Memory, and State

	Summary

